
Digital Twin as a Service

(DTaaS)
DTaaS Development Team

Copyright © 2022 - 2024 The INTO-CPS Association

Table of contents

41. What is DTaaS?

41.1 License

52. User

52.1 DTaaS for Users

62.2 Overview

82.3 DTaaS Website Screenshots

182.4 Reusable Assets

252.5 Digital Twins

342.6 Working with Gitlab

382.7 Runner

422.8 Examples

1003. Admin

1003.1 Install

1333.2 Integrated Gitlab

1413.3 DTaaS Command Line Interface

1443.4 Independent Packages

1483.5 Guides

1584. Frequently Asked Questions

1584.1 Abreviations

1584.2 General Questions

1594.3 Digital Twin Assets

1594.4 Digital Twin Models

1594.5 Communication Between Physical Twin and Digital Twin

1604.6 Data Management

1614.7 Platform Native Services on DTaaS Platform

1614.8 Comparison with other DT Platforms

1624.9 GDPR Concerns

1635. Developer

1635.1 Contributors Guide

1665.2 Contributor Covenant Code of Conduct

1685.3 Secrets for Github Action

1695.4 System

1735.5 OAuth2 Authorization

1825.6 Testing

1845.7 Docker workflow for DTaaS

Table of contents

- 2/203 - Copyright © 2022 - 2024 The INTO-CPS Association

1855.8 Publish NPM packages

1875.9 DevOps Framework

1976. Few issues in the Software

1976.1 Third-Party Software

1976.2 Gitlab

1987. Contributors

1987.1 Users

1987.2 Example Contributors

1987.3 Documentation

1998. License

1998.1 License

2038.2 Third Party Software

Table of contents

- 3/203 - Copyright © 2022 - 2024 The INTO-CPS Association

1. What is DTaaS?

The Digital Twin as a Service (DTaaS) software platform is useful to Build, Use and Share digital twins (DTs).

Build: DTs are built on DTaaS using reusable DT assets available on the platform.

Use: Run your DTs on DTaaS.

Share: Share ready-to-use DTs with other users. It is also possible to share the services offered by one DT with other users.

There is an overview of DTaaS available in the form of slides, video, and feature walkthrough.

1.1 License

This software is owned by The INTO-CPS Association and is available under the INTO-CPS License.

DTaaS software platform uses third-party open-source software. These software components have their own licenses.

1. What is DTaaS?

- 4/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/DTaaS-short-intro_Nov2024.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/DTaaS-short-intro_Nov2024.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/dtaas-v0.6-demo.mp4
https://into-cps.org/

2. User

2.1 DTaaS for Users

2.1.1 User Guide

This guide is for users of the DTaaS platform. Please make sure that you have access to a live installation of the DTaaS platform. The easiest
is localhost installation scenario.

Please see user-specific Slides and Video to get the conceptual framework behind composable digital twins in the DTaaS platform.

2.1.2 Motivation

How can DT software platforms enable users collaborate to:

Build digital twins (DTs)

Use DTs themselves

Share DTs with other users

Provide the existing DTs as Service to other users

In addition, how can the DT software platforms:

Support DT lifecycle

Scale up rather than scale down (flexible convention over configuration)

2.1.3 Existing Approaches

There are quite a few solutions proposed in the recent past to solve this problem. Some of them are:

Focus on data from Physical Twins (PTs) to perform analysis, diagnosis, planning etc…

Share DT assets across the upstream, downstream etc….

Evaluate different models of PT

DevOps for Cyber Physical Systems (CPS)

Scale DT / execution of DT / ensemble of related DTs

Support for PT product lifecycle

2.1.4 Our Approach

Support for transition from existing workflows to DT frameworks

Create DTs from reusable assets

Enable users to share DT assets

Offer DTs as a Service

Integrate the DTs with external software systems

Separate configurations of independent DT components

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2. User

- 5/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/20240917-Users.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20240917-Users-Recorded-web.mp4

2.2 Overview

2.2.1 Advantages

The DTaaS software platform provides certain advantages to users:

Support for different kinds of Digital Twins

CFD, Simulink, co-simulation, FEM, ROM, ML etc.

Integrates with other Digital Twin frameworks

Facilitate availability of Digital Twin as a Service

Collaboration and reuse

Private workspaces for verification of reusable assets, trial run DTs

Cost effectiveness

2.2.2 Software Features

Each installation of DTaaS platform comes with the features highlighted in the following picture.

All the users have dedicated workspaces. These workspaces are dockerized versions of Linux Desktops. The user desktops are isolated so
the installations and customizations done in one user workspace do not effect the other user workspaces.

Each user workspace comes with some development tools pre-installed. These tools are directly accessible from web browser. The
following tools are available at present:

•

•

•

•

•

•

•

Tool Advantage

Jupyter Lab Provides flexible creation and use of digital twins and their components from web browser. All the native
Jupyterlab usecases are supported here.

Jupyter Notebook Useful for web-based management of their files (library assets)

VS Code in the
browser

A popular IDE for software development. Users can develop their digital twin-related assets here.

ungit An interactive git client. Users can work with git repositories from web browser

2.2 Overview

- 6/203 - Copyright © 2022 - 2024 The INTO-CPS Association

In addition, users have access to xfce-based remote desktop via VNC client. The VNC client is available right in the web browser. The xfce
supported desktop software can also be run in their workspace.

The DTaaS software platform has some pre-installed services available. The currently available services are:

In addition, the workspaces are connected to the Internet so all the Digital Twins running in the workspace can interact with both the
internal and external services.

The users can publish and reuse the digital twin assets available on the platform. In addition, users can run their digital twins and make
these live digital twins available as services to their clients. The clients need not be users of the DTaaS software installation.

Service Advantage

InfluxDB Time-series database primarly for storing time-series data from physical twins. The digital twins can use an
already existing data. Users can also create visualization dashboards for their digital twins.

RabbitMQ Communication broker for communication between physical and digital twins

Grafana Visualization dashboards for their digital twins.

MQTT Lightweight data transfer broker for IoT devices / physical twins feeding data into digital twins.

MongoDB NoSQL document database for storing metadata of data from physical twins

2.2.2 Software Features

- 7/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.3 DTaaS Website Screenshots

This page contains a screenshot driven preview of the website serving the DTaaS software platform.

2.3.1 Visit the DTaaS Application

Start off by simply visiting the website of the DTaaS instance for which you are a user.

2.3.2 Redirected to Authorization Provider

You will be redirected to the Gitlab Authorization for DTaaS.

2.3 DTaaS Website Screenshots

- 8/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Enter your email/username and password. If the email ID registered with DTaaS, is the same as your Google Login email ID, you can also
opt to sign in using Google.

You will be redirected to the OAuth Application page.

2.3.3 Permit DTaaS Server to Use Gitlab

Click on Authorize to allow the OAuth application to access the information connected to your Gitlab account. This is a necessary step.

You are now logged into the DTaaS server. You will be redirected to the login page of the DTaaS website.

2.3.3 Permit DTaaS Server to Use Gitlab

- 9/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The DTaaS website uses an additional layer of security - the third-party authorization protocol known as OAuth. This protocol provides
secure access to a DTaaS installation if users have a working active accounts at the selected OAuth service provider. This also uses Gitlab as
OAuth provider.

You can see the Gitlab signin button. A click on this button takes you to Gitlab instance providing authorization for DTaaS. You will not
need to sign in to Gitlab again, unless you have explicitly logged out of your Gitlab account.

2.3.4 Permit DTaaS Website to Use Gitlab

The DTaaS website needs your permission to use your Gitlab account for authorization. Click on Authorize button.

2.3.4 Permit DTaaS Website to Use Gitlab

- 10/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-pkce

After successful authorization, you will be redirected to the Library page of the DTaaS website.

There are two icons on the top-right of the webpage. The hyperlink on question mark icon redirects to help page while the hyperlink on
github icon redirects to github code repository.

2.3.5 Overview of menu items

The menu is hidden by default. Only the icons of menu items are visible. You can click on the icon in the top-left corner of the page to

see the menu.

There are three menu items:

Library: for management of reusable library assets. You can upload, download, create and modify new files on this page.

Digital Twins: for management of digital twins. You are presented with the Jupyter Lab page from which you can run the digital twins.

Workbench: Not all digital twins can be managed within Jupyter Lab. You have more tools at your disposal on this page.

2.3.5 Overview of menu items

- 11/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.3.6 Library tabs and their help text

You can see five tabs each corresponding to one type of digital twin assets. Each tab provides help text to guide users on the type of an
asset.

The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and functions
can be used to create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to their use;
functions written by domain experts along with right data inputs can make model calibration an achievable goal. Another use of functions is to
process the sensor and actuator data of both Physical Twins and Digital Twins.

The data sources and sinks available to a digital twins. Typical examples of data sources are sensor measurements from Physical Twins, and
test data provided by manufacturers for calibration of models. Typical examples of data sinks are visualization software, external users and
data storage services. There exist special outputs such as events, and commands which are akin to control outputs from a Digital Twin. These
control outputs usually go to Physical Twins, but they can also go to another Digital Twin.

The model assets are used to describe different aspects of Physical Twins and their environment, at different levels of abstraction. Therefore, it
is possible to have multiple models for the same Physical Twin. For example, a flexible robot used in a car production plant may have
structural model(s) which will be useful in tracking the wear and tear of parts. The same robot can have a behavioural model(s) describing the
safety guarantees provided by the robot manufacturer. The same robot can also have a functional model(s) describing the part manufacturing
capabilities of the robot.

Functions

Data

Models

2.3.6 Library tabs and their help text

- 12/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The software tool assets are software used to create, evaluate and analyze models. These tools are executed on top of a computing platforms,
i.e., an operating system, or virtual machines like Java virtual machine, or inside docker containers. The tools tend to be platform specific,
making them less reusable than models. A tool can be packaged to run on a local or distributed virtual machine environments thus allowing
selection of most suitable execution environment for a Digital Twin. Most models require tools to evaluate them in the context of data inputs.
There exist cases where executable packages are run as binaries in a computing environment. Each of these packages are a pre-packaged
combination of models and tools put together to create a ready to use Digital Twins.

These are ready to use digital twins created by one or more users. These digital twins can be reconfigured later for specific use cases.

There are two sub-tabs, namely private and common. The library assets in private category are visible only to the logged in user while the
library assets in common category are available to all the users.

Further explanation on the placement of reusable assets within each type and the underlying directory structure on the server is in the
assets page

You can upload assets (files) using the upload button.

 The file manager is based on Jupyter notebook and all the tasks you can perform in the Jupyter Notebook can be undertaken here.

2.3.7 Digital Twins page

The digital twins page has three tabs and the central pane opens Jupyter lab. There are three tabs with helpful instructions on the
suggested tasks you can undertake in the Create - Execute - Analyze life cycle phases of digital twin. You can see more explanation on the
life cycle phases of digital twin.

Tools

Digital Twins

Note

2.3.7 Digital Twins page

- 13/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Create digital twins from tools provided within user workspaces. Each digital twin will have one directory. It is suggested that user provide one
bash shell script to run their digital twin. Users can create the required scripts and other files from tools provided in Workbench page.

Digital twins are executed from within user workspaces. The given bash script gets executed from digital twin directory. Terminal-based digital
twins can be executed from VSCode and graphical digital twins can be executed from VNC GUI. The results of execution can be placed in the
data directory.

The analysis of digital twins requires running of digital twin script from user workspace. The execution results placed within data directory
are processed by analysis scripts and results are placed back in the data directory. These scripts can either be executed from VSCode and
graphical results or can be executed from VNC GUI. The analysis of digital twins requires running of digital twin script from user workspace.
The execution results placed within data directory are processed by analysis scripts and results are placed back in the data directory. These
scripts can either be executed from VSCode and graphical results or can be executed from VNC GUI.

 The reusable assets (files) seen in the file manager are available in the Jupyter Lab. In addition, there is a git plugin installed in the

Jupyter Lab using which you can link your files with the external git repositories.

2.3.8 Workbench

The workbench page provides links to four integrated tools.

Desktop

VS Code

Jupyter Lab

Jupyter Notebook

Create

Execute

Analyze

•

•

•

•

2.3.8 Workbench

- 14/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The hyperlinks open in new browser tab. The screenshots of pages opened in new browser are:

The Terminal hyperlink does not exist on workbench page. If you want terminal. Please use the tools dropdown in the Jupyter Notebook.

Terminal

2.3.8 Workbench

- 15/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.3.9 Digital Twins Preview Page

There is a fifth link on the Workbench page. It is Digital Twins Preview Page. It is an experimental feature at the moment. Clicking on the
link opens a new page that is similar to the Digital Twins page.

There are two tabs, namely Manage and Execute.

Read the complete description of digital twins. If necessary, users can delete a digital twin, removing it from the workspace with all its
associated data. Users can also reconfigure the digital twin.

Execute the Digital Twins using Gitlab CI/CD workflows.

Manage

Execute

2.3.9 Digital Twins Preview Page

- 16/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.3.10 Finally logout

You have to close the browser in order to completely exit the DTaaS software platform.

2.3.10 Finally logout

- 17/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.4 Reusable Assets

2.4.1 Reusable Assets

The reusability of digital twin assets makes it easy for users to work with the digital twins. The reusability of assets is a fundamental
feature of the platform.

Kinds of Reusable Assets

The DTaaS software categorizes all the reusable library assets into six categories:

DATA

The data sources and sinks available to a digital twins. Typical examples of data sources are sensor measurements from Physical Twins,
and test data provided by manufacturers for calibration of models. Typical examples of data sinks are visualization software, external
users and data storage services. There exist special outputs such as events, and commands which are akin to control outputs from a Digital
Twin. These control outputs usually go to Physical Twins, but they can also go to another Digital Twin.

MODELS

The model assets are used to describe different aspects of Physical Twins and their environment, at different levels of abstraction.
Therefore, it is possible to have multiple models for the same Physical Twin. For example, a flexible robot used in a car production plant
may have structural model(s) which will be useful in tracking the wear and tear of parts. The same robot can have a behavioural model(s)
describing the safety guarantees provided by the robot manufacturer. The same robot can also have a functional model(s) describing the
part manufacturing capabilities of the robot.

TOOLS

The software tool assets are software used to create, evaluate and analyze models. These tools are executed on top of a computing
platforms, i.e., an operating system, or virtual machines like Java virtual machine, or inside docker containers. The tools tend to be
platform specific, making them less reusable than models. A tool can be packaged to run on a local or distributed virtual machine
environments thus allowing selection of most suitable execution environment for a Digital Twin. Most models require tools to evaluate
them in the context of data inputs. There exist cases where executable packages are run as binaries in a computing environment. Each of
these packages are a pre-packaged combination of models and tools put together to create a ready to use Digital Twins.

2.4 Reusable Assets

- 18/203 - Copyright © 2022 - 2024 The INTO-CPS Association

FUNCTIONS

The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and
functions can be used to create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to their
use; functions written by domain experts along with right data inputs can make model calibration an achievable goal. Another use of
functions is to process the sensor and actuator data of both Physical Twins and Digital Twins.

DIGITAL TWINS

These are ready to use digital twins created by one or more users. These digital twins can be reconfigured later for specific use cases.

File System Structure

Each user has their assets put into five different directories named above. In addition, there will also be common library assets that all
users have access to. A simplified example of the structure is as follows:

The DTaaS is agnostic to the format of your assets. The only requirement is that they are files which can be uploaded on the Library page. Any
directories can be compressed as one file and uploaded. You can decompress the file into a directory from a Terminal or xfce Desktop available
on the Workbench page.

A recommended file system structure for storing assets is also available in DTaaS examples.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

workspace/
 data/
 data1/ (ex: sensor)
 filename (ex: sensor.csv)
 README.md
 data2/ (ex: turbine)
 README.md (remote source; no local file)
 ...
 digital_twins/
 digital_twin-1/ (ex: incubator)
 config (yaml and json)
 README.md (usage instructions)
 description.md (short summary of digital twin)
 lifecycle/ (directory containing lifecycle scripts)
 digital_twin-2/ (ex: mass spring damper)
 config (yaml and json)
 README.md (usage instructions)
 description.md (short summary of digital twin)
 lifecycle/ (directory containing lifecycle scripts)
 digital_twin-3/ (ex: model swap)
 config (yaml and json)
 README.md (usage instructions)
 description.md (short summary of digital twin)
 lifecycle/ (directory containing lifecycle scripts)
 ...
 functions/
 function1/ (ex: graphs)
 filename (ex: graphs.py)
 README.md
 function2/ (ex: statistics)
 filename (ex: statistics.py)
 README.md
 ...
 models/
 model1/ (ex: spring)
 filename (ex: spring.fmu)
 README.md
 model2/ (ex: building)
 filename (ex: building.skp)
 README.md
 model3/ (ex: rabbitmq)
 filename (ex: rabbitmq.fmu)
 README.md
 ...
 tools/
 tool1/ (ex: maestro)
 filename (ex: maestro.jar)
 README.md
 ...
 common/
 data/
 functions/
 models/
 tools/

Tip

2.4.1 Reusable Assets

- 19/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS-examples

Upload Assets

Users can upload assets into their workspace using Library page of the website.

You can go into a directory and click on the upload button to upload a file or a directory into your workspace. This asset is then available
in all the workbench tools you can use. You can also create new assets on the page by clicking on new drop down menu. This is a simple
web interface which allows you to create text-based files. You need to upload other files using upload button.

The user workbench has the following services:

Jupyter Notebook and Lab

VS Code

XFCE Desktop Environment available via VNC

Terminal

Users can also bring their DT assets into user workspaces from outside using any of the above mentioned services. The developers using
git repositories can clone from and push to remote git servers. Users can also use widely used file transfer protocols such as FTP, and SCP
to bring the required DT assets into their workspaces.

•

•

•

•

2.4.1 Reusable Assets

- 20/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.4.2 Library Microservice

The lib microservice is responsible for handling and serving the contents of library assets of the DTaaS platform. It provides API endpoints
for clients to query, and fetch these assets.

This document provides instructions for using the library microservice.

Please see assets for a suggested storage conventions of your library assets.

Once the assets are stored in the library, they become available in user workspace.

Application Programming Interface (API)

The lib microservice application provides services at two end points:

GraphQL API Endpoint: http://foo.com/lib

HTTP Endpoint: http://foo.com/lib/files

HTTP PROTOCOL

Endpoint: localhost:PORT/lib/files

This option needs to be enabled with -H http.json flag. The regular file upload and download options become available.

Here are sample screenshots.

GRAPHQL PROTOCOL

Endpoint: localhost:PORT/lib

The http://foo.com/lib URL opens a graphql playground.

You can check the query schema and try sample queries here. The graphql queries need to be sent as HTTP POST requests and get
responses.

2.4.2 Library Microservice

- 21/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The library microservice services two API calls:

Provide a list of contents for a directory

Fetch a file from the available files

The API calls are accepted over GraphQL and HTTP API end points. The format of the accepted queries are:

PROVIDE LIST OF CONTENTS FOR A DIRECTORY

To retrieve a list of files in a directory, use the following GraphQL query.

Replace path with the desired directory path.

send requests to: https://foo.com/lib

GraphQL query for list of contents

•

•

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

query {
listDirectory(path: "user1") {
repository {
tree {
blobs {
edges {
node {
name
type

}
}

}
trees {
edges {
node {
name
type

}
}

}
}

}
}

}

2.4.2 Library Microservice

- 22/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://foo.com/lib

GraphQL response for list of contents

HTTP request for list of contents

HTTP response for list of contents

FETCH A FILE FROM THE AVAILABLE FILES

This query receives directory path and send the file contents to user in response.

To check this query, create a file files/user2/data/welcome.txt with content of hello world .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

{
"data": {
"listDirectory": {
"repository": {
"tree": {
"blobs": {
"edges": []

},
"trees": {
"edges": [
{
"node": {
"name": "common",
"type": "tree"

}
},
{
"node": {
"name": "data",
"type": "tree"

}
},
{
"node": {
"name": "digital twins",
"type": "tree"

}
},
{
"node": {
"name": "functions",
"type": "tree"

}
},
{
"node": {
"name": "models",
"type": "tree"

}
},
{
"node": {
"name": "tools",
"type": "tree"

}
}

]
}

}
}

}
}

}

1
2
3
4
5
6
7
8

POST /lib HTTP/1.1
Host: foo.com
Content-Type: application/json
Content-Length: 388

{
"query":"query {\n listDirectory(path: \"user1\") {\n repository {\n tree {\n blobs {\n edges {\n node {\n name\n

type\n }\n }\n }\n trees {\n edges {\n node {\n name\n type\n }\n }\n }
\n }\n }\n }\n}"
}

1
2
3
4
5
6
7
8

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Connection: close
Content-Length: 306
Content-Type: application/json; charset=utf-8
Date: Tue, 26 Sep 2023 20:26:49 GMT
X-Powered-By: Express
{"data":{"listDirectory":{"repository":{"tree":{"blobs":{"edges":[]},"trees":{"edges":[{"node":{"name":"data","type":"tree"}},{"node":{"name":"digital twins","type":"tree"}},{"node":
{"name":"functions","type":"tree"}},{"node":{"name":"models","type":"tree"}},{"node":{"name":"tools","type":"tree"}}]}}}}}}

2.4.2 Library Microservice

- 23/203 - Copyright © 2022 - 2024 The INTO-CPS Association

GraphQL query for fetch a file

GraphQL response for fetch a file

HTTP request for fetch a file

HTTP response for fetch a file

The path refers to the file path to look at: For example, user1 looks at files of user1; user1/functions looks at contents of functions/ directory.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

query {
readFile(path: "user2/data/sample.txt") {
repository {
blobs {
nodes {
name
rawBlob
rawTextBlob

}
}

}
}

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

{
"data": {
"readFile": {
"repository": {
"blobs": {
"nodes": [
{
"name": "sample.txt",
"rawBlob": "hello world",
"rawTextBlob": "hello world"

}
]

}
}

}
}

}

1
2
3
4
5
6
7

POST /lib HTTP/1.1
Host: foo.com
Content-Type: application/json
Content-Length: 217
{
"query":"query {\n readFile(path: \"user2/data/welcome.txt\") {\n repository {\n blobs {\n nodes {\n name\n rawBlob\n

rawTextBlob\n }\n }\n }\n }\n}"
}

1
2
3
4
5
6
7
8

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Connection: close
Content-Length: 134
Content-Type: application/json; charset=utf-8
Date: Wed, 27 Sep 2023 09:17:18 GMT
X-Powered-By: Express
{"data":{"readFile":{"repository":{"blobs":{"nodes":[{"name":"welcome.txt","rawBlob":"hello world","rawTextBlob":"hello world"}]}}}}}

2.4.2 Library Microservice

- 24/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.5 Digital Twins

2.5.1 Create a Digital Twin

The first step in digital twin creation is to use the available assets in your workspace. If you have assets / files in your computer that need
to be available in the DTaaS workspace, then please follow the instructions provided in library assets.

There are dependencies among the library assets. These dependencies are shown below.

A digital twin can only be created by linking the assets in a meaningful way. This relationship can be expressed using a mathematical
equation:

where D denotes data, M denotes models, F denotes functions, T denotes tools, denotes DT configuration and is a symbolic notation for a
digital twin itself. The expression denotes composition of DT from D,M,T and F assets. The indicates zero or one more instances of an asset
and indicates one or more instances of an asset.

The DT configuration specifies the relevant assets to use, the potential parameters to be set for these assets. If a DT needs to use RabbitMQ,
InfluxDB like services supported by the platform, the DT configuration needs to have access credentials for these services.

This kind of generic DT definition is based on the DT examples seen in the wild. You are at liberty to deviate from this definition of DT. The
only requirement is the ability to run the DT from either commandline or desktop.

If you are stepping into the world of Digital Twins, you might not have distinct digital twin assets. You are likely to have one directory of
everything in which you run your digital twin. In such a case we recommend that you upload this monolithic digital twin into digital_twin/
your_digital_twin_name directory.

Example

The Examples repository contains a co-simulation setup for mass spring damper. This example illustrates the potential of using co-
simulation for digital twins.

Tip

2.5 Digital Twins

- 25/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS-examples

The file system contents for this example are:

The workspace/data/mass-spring-damper/ contains input and output data for the mass-spring-damper digital twin.

The two FMU models needed for this digital twin are in models/ directory.

The co-simulation digital twin needs Maestro co-simulation orchestrator. Since this is a reusable asset for all the co-simulation based DTs,
the tool has been placed in common/tools/ directory.

The actual digital twin configuration is specified in digital twins/mass-spring-damper directory. The co-simulation configuration is specified in
two json files, namely cosim.json and time.json . A small explanation of digital twin for its users can be placed in digital twins/mass-spring-
damper/README.md .

The launch program for this digital twin is in digital twins/mass-spring-damper/lifecycle/execute . This launch program runs the co-simulation
digital twin. The co-simulation runs till completion and then ends. The programs in digital twins/mass-spring-damper/lifecycle are responsible
for lifecycle management of this digital twin. The lifecycle page provides more explanation on these programs.

A frequent question arises on the run time characteristics of a digital twin. The natural intuition is to say that a digital twin must operate as
long as its physical twin is in operation. If a digital twin runs for a finite time and then ends, can it be called a digital twin? The answer is
a resounding YES. The Industry 4.0 usecases seen among SMEs have digital twins that run for a finite time. These digital twins are often run at
the discretion of the user.

You can run this digital twin by,

Go to Workbench tools page of the DTaaS website and open VNC Desktop. This opens a new tab in your browser

A page with VNC Desktop and a connect button comes up. Click on Connect. You are now connected to the Linux Desktop of your workspace.

Open a Terminal (black rectangular icon in the top left region of your tab) and type the following commands.

Download the example files by following the instructions given on examples overview.

Go to the digital twin directory and run

The last command executes the mass-spring-damper digital twin and stores the co-simulation output in data/mass-spring-damper/output .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

workspace/
 data/
 mass-spring-damper
 input/
 output/

 digital_twins/
 mass-spring-damper/
 cosim.json
 time.json
 lifecycle/
 analyze
 clean
 evolve
 execute
 save
 terminate
 README.md

 functions/
 models/
 MassSpringDamper1.fmu
 MassSpringDamper2.fmu

 tools/
 common/
 data/
 functions/
 models/
 tools/
 maestro-2.3.0-jar-with-dependencies.jar

Execution of a Digital Twin

1.

2.

3.

4.

5.

1
2

cd /workspace/examples/digital_twins/mass-spring-damper
lifecycle/execute

2.5.1 Create a Digital Twin

- 26/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.5.2 Digital Twin Lifecycle

The physical products in the real world have product lifecycle. A simplified four-stage product life is illustrated here.

A digital twin tracking the physical products (twins) need to track and evolve in conjunction with the corresponding physical twin.

The possible activities undertaken in each lifecycle phases are illustrated in the figure.

(Ref: Minerva, R, Lee, GM and Crespi, N (2020) Digital Twin in the IoT context: a survey on technical features, scenarios and architectural
models. Proceedings of the IEEE, 108 (10). pp. 1785-1824. ISSN 0018-9219.)

Lifecycle Phases

The four phase lifecycle has been extended to a lifecycle with eight phases. The new phase names and the typical activities undertaken in
each phase are outlined in this section.

A DT lifecycle consists of explore, create, execute, save, analyse, evolve and terminate phases.

A digital twin faithfully tracking the physical twin lifecycle will have to support all the phases. It is also possible for digital twin engineers
to add more phases to digital they are developing. Thus it is important for the DTaaS software platform needs to accommodate needs of
different DTs.

A potential linear representation of the tasks undertaken in a digital twin lifecycle are shown here.

Phase Main Activities

explore selection of suitable assets based on the user needs and checking their compatibility for the purposes of creating a
DT.

create specification of DT configuration. If DT already exists, there is no creation phase at the time of reuse.

execute automated / manual execution of a DT based on its configuration. The DT configuration must checked before
starting the execution phase.

analyse checking the outputs of a DT and making a decision. The outputs can be text files, or visual dashboards.

evolve reconfigure DT primarily based on analysis.

save involves saving the state of DT to enable future recovery.

terminate stop the execution of DT.

2.5.2 Digital Twin Lifecycle

- 27/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Again this is only a one possible pathway. Users are at liberty to alter the sequence of steps.

It is possible to map the lifecycle phases identified so far with the Build-Use-Share approach of the DTaaS software platform.

Even though not mandatory, having a matching coding structure makes it easy to for users to create and manage their DTs within the
DTaaS. It is recommended to have the following structure:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

workspace/
 digital_twins/
 digital-twin-1/
 lifecycle/
 analyze
 clean
 evolve
 execute
 save
 terminate

2.5.2 Digital Twin Lifecycle

- 28/203 - Copyright © 2022 - 2024 The INTO-CPS Association

A dedicated program exists for each phase of DT lifecycle. Each program can be as simple as a script that launches other programs or
sends messages to a live digital twin.

The recommended way to implement lifecycle phases within DTaaS is to create scripts. These scripts can be as simple as shell

scripts.

Example Lifecycle Scripts

Here are the example programs / scripts to manage three phases in the lifecycle of mass-spring-damper DT.

The execute phases uses the DT configuration, FMU models and Maestro tool to execute the digital twin. The script also stores the output of
cosimulation in /workspace/data/mass-spring-damper/output .

It is possible for a DT not to support a specific lifecycle phase. This intention can be specified with an empty script and a helpful message if
deemed necessary.

The lifecycle programs can call other programs in the code base. In the case of lifecycle/terminate program, it is calling another script to do
the necessary job.

1
2
3
4
5
6
7

#!/bin/bash
mkdir -p /workspace/data/mass-spring-damper/output
#cd ..
java -jar /workspace/common/tools/maestro-2.3.0-jar-with-dependencies.jar \

import -output /workspace/data/mass-spring-damper/output \
--dump-intermediate sg1 cosim.json time.json -i -vi FMI2 \
output-dir>debug.log 2>&1

1
2

#!/bin/bash
printf "operation is not supported on this digital twin"

1
2

#!/bin/bash
lifecycle/clean

2.5.2 Digital Twin Lifecycle

- 29/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.5.3 DevOps Preview

Digital Twin File Structure in Gitlab

We use GitLab as a file store for performing DevOps on Digital Twins. The user interface page is a front-end for this gitlab-backed file
storage.

Each DTaaS installation comes with an integrated Gitlab. There must be a gitlab group named dtaas and a gitlab repository for each user
where repository name matches the username. For example, if there are two users, namely user1 and user2 on a DTaaS installation, then
the following repositories must exist on the linked Gitlab installation.

Each user repository must also have a specific structure. The required structure is as follows.

This file structure follows the same pattern user sees on the existing Library page.

DIGITAL TWIN STRUCTURE

The digital_twins folder contains DTs that have been pre-built by one or more users. The intention is that they should be sufficiently
flexible to be reconfigured as required for specific use cases.

Let us look at an example of such a configuration. The dtaas/user1 repository on gitlab.com contains the digital_twins directory with a
hello_world example. Its file structure looks like this:

The lifecycle directory here contains four files - clean , create , execute and terminate , which are simple BASH scripts. These correspond to
stages in a digital twin's lifecycle. Further explanation of digital twin is available on lifecycle stages.

1
2
3

https://foo.com/gitlab/dtaas/common.git
https://foo.com/gitlab/dtaas/user1.git
https://foo.com/gitlab/dtaas/user2.git

1
2
3
4
5
6
7
8
9

<username>/
├── common/
├── data/
├── digital_twins/
├── functions/
├── models/
├── tools/
├── .gitlab-ci.yml
└── README.md

1
2
3
4
5
6
7
8
9

hello_world/
├── lifecycle/ (at least one lifecycle script)
│ ├── clean
│ ├── create
│ ├── execute
│ └── terminate
├── .gitlab-ci.yml (Gitlab DevOps config for executing lifecycle scripts)
└── description.md (optional but is recommended)
└── README.md (optional but is recommended)

2.5.3 DevOps Preview

- 30/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.com/dtaas/user1
https://www.gnu.org/software/bash/

Digital Twins and DevOps

DevOps has been a well established software development practice. We are bringing out an experimental feature of integration DevOps in
the DTaaS.

This feature is under documented. Please expect some instability in this release. However, we are working to mature the feature and improve
the documentation.

This feature requires specific installation setup.

Integrated gitlab installation

A valid gitlab repository for the logged in user. Please see an example repository. You can clone this repository and customize to your needs.

A linked Gitlab Runner to the user gitlab repository.

MANAGE TAB

The manage tab allows for different operations on a digital twin:

Checking the details (Details button)

Delete (Delete button)

Modify / Reconfigure (Reconfigure button)

A digital twin placed in the DTaaS has a certain recommended structure. Please see the assets pag for an explanation and this example.

The information page shown using the Details button, shows the README.md information stored inside the digital twin directory.

Warning

1.

2.

3.

•

•

•

2.5.3 DevOps Preview

- 31/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://en.wikipedia.org/wiki/DevOps
https://gitlab.com/dtaas/user1
https://github.com/INTO-CPS-Association/DTaaS-examples/tree/main/digital_twins/mass-spring-damper

A reconfigure button opens an editor and shows all the files corresponding to a digital twin. All of these files can be updated. These files
correspond to three categories.

Description

Configuration

Lifecycle

•

•

•

2.5.3 DevOps Preview

- 32/203 - Copyright © 2022 - 2024 The INTO-CPS Association

EXECUTE TAB

The execute tabs shows the possibility of executing multiple digital twins. Once an execution of digital twin is complete, you can see the
execution log as well.

2.5.3 DevOps Preview

- 33/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.6 Working with Gitlab

The DTaaS relies on Gitlab for two purposes.

OAuth2 authorisation service

DevOps service

The admin documentation covers the OAuth2 authorisation configuration. This guide covers the use of git commands and project structure
for Gitlab DevOps service inside the DTaaS.

2.6.1 Preparation

The first step is to create a gitlab project with username in gitlab user group named dtaas.

This user needs to have ownership permissions over the project.

1.

2.

2.6 Working with Gitlab

- 34/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.6.2 Git commands

The usual git commands and workflows should be used. There are two ways to use Gitlab project as a remote git server.

Over SSH using personal SSH key

Over HTTPS using personal access tokens (PAT)

This tutorial shows use of PAT for working with Gitlab server.

First step is to create PAT.

1.

2.

2.6.2 Git commands

- 35/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

Copy this token and use it to clone the git repository.

2.6.3 Library Assets

The Gitlab is used to store the reusable Library assets of all users. There is a mandatory structure for storing and using Library assets
including digital twins. A properly initialised gitlab project should have the following structure.

2.6.3 Library Assets

- 36/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Please pay special attention to .gitlab-ci.yml . It must be a valid Gitlab DevOps configuration. You can also check example repo for a sample
structure.

For example, with PAT1 as PAT of dtaas/user1 repository, the command to clone the repository is

Add the required Library assets and then

2.6.4 Next Steps

Remember to have a gitlab runner integrated with your project repository. There might already be some runners installed with your
DTaaS application. You can check them on the runners page. In addition, you can install your own runners integrated into your repository.

Now, the Digital Twins Preview can be used to access the DevOps features of the DTaaS platform.

1
2

$git clone https://user1:PAT1@shared.dtaas-digitaltwin.com/gitlab/dtaas/user1.git
$cd user1

1 $git push origin

2.6.4 Next Steps

- 37/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.com/dtaas/user1

2.7 Runner

A utility service to manage safe execution of remote scripts / commands. User launches this from commandline and let the utility manage
the commands to be executed.

The runner utility runs as a service and provides REST API interface to safely execute remote commands. Multiple runners can be active
simultaneously on one computer. The commands are sent via the REST API and are executed on the computer with active runner.

2.7.1 Install

NPM Registry

The package is available on npmjs.

Install the package with the following command:

Github Registry

The package is available in Github packages registry.

Set the registry and install the package with the following commands

The npm install command asks for username and password. The username is your Github username and the password is your Github
personal access token. In order for the npm to download the package, your personal access token needs to have read:packages scope.

2.7.2 Configure

The utility requires config specified in YAML format. The template configuration file is:

It is suggested that the configuration file be named as runner.yaml and placed in the directory in which the runner microservice is run.

The location refers to the relative location of the scripts directory with respect to the location of runner.yaml file.

However, there is no limitation on either the configuration filename or the location . The path to runner.yaml can either be relative or
absolute path. However, the location path is always relative path with respect to the path of runner.yaml file.

 The commands must be executable. Please make sure that the commands have execute permission on Linux platforms.

2.7.3 Create Commands

The runner requires commands / scripts to be run. These need to be placed in the location specified in runner.yaml file. The location must
be relative to the directory in which the runner microservice is being run.

1 sudo npm install -g @into-cps-association/runner

1
2

sudo npm config set @into-cps-association:registry https://npm.pkg.github.com
sudo npm install -g @into-cps-association/runner

1
2
3
4
5
6

port: 5000
location: 'script' #directory location of scripts
commands: #list of permitted scripts
- create
- execute
- terminate

2.7 Runner

- 38/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://www.npmjs.com/package/@into-cps-association/runner
https://github.com/orgs/INTO-CPS-Association/packages
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

2.7.4 Use

Display help.

The config option is not mandatory. If it is not used, runner looks for runner.yaml in the directory from which it is being run. Once
launched, the utility runs at the port specified in runner.yaml file.

If launched on one computer, you can access the same at http://localhost:<port> .

Access to the service on network is available at http://<ip or hostname>:<port>/ .

Application Programming Interface (API)

Three REST API methods are active. The route paths and the responses given for these two sources are:

1
2
3
4
5
6
7
8
9

$runner -h
Usage: runner [options]

Remote code execution for humans

Options:
-v --version package version
-c --config <string> runner config file specified in yaml format (default: "runner.yaml")
-h --help display help

1
2
3

runner #use runner.yaml of the present working directory
runner -c FILE-PATH #absolute or relative path to config file
runner --config FILE-PATH #absolute or relative path to config file

REST API Route HTTP Method Return Value Comment

localhost:port POST Returns the execution status of
command

Executes the command provided. Each
invocation appends to array of commands
executed so far.

localhost:port GET Returns the execution status of the
last command sent via POST
request.

localhost:port/
history

GET Returns the array of POST requests
received so far.

2.7.4 Use

- 39/203 - Copyright © 2022 - 2024 The INTO-CPS Association

POST REQUEST TO /

Executes a command. The command name given here must exist in location directory.

GET REQUEST TO /

Shows the status of the command last executed.

Valid HTTP Request HTTP Response - Valid Command HTTP Response - Inalid Command

1
2
3
4
5
6
7
8

POST / HTTP/1.1
Host: foo.com
Content-Type: application/json
Content-Length: 388

{
 "name": "<command-name>"
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

Connection: close
Content-Length: 134
Content-Type: application/json; charset=utf-8
Date: Tue, 09 Apr 2024 08:51:11 GMT
Etag: W/"86-ja15r8P5HJu72JcROfBTV4sAn2I"
X-Powered-By: Express

{
 "status": "success"
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

Connection: close
Content-Length: 28
Content-Type: application/json; charset=utf-8
Date: Tue, 09 Apr 2024 08:51:11 GMT
Etag: W/"86-ja15r8P5HJu72JcROfBTV4sAn2I"
X-Powered-By: Express

{
 "status": "invalid command"
}

Valid HTTP Request HTTP Response - Valid Command HTTP Response - Inalid Command

1
2
3
4
5
6
7
8

GET / HTTP/1.1
Host: foo.com
Content-Type: application/json
Content-Length: 388

{
 "name": "<command-name>"
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Connection: close
Content-Length: 134
Content-Type: application/json; charset=utf-8
Date: Tue, 09 Apr 2024 08:51:11 GMT
Etag: W/"86-ja15r8P5HJu72JcROfBTV4sAn2I"
X-Powered-By: Express

{
 "name": "<command-name>",
 "status": "valid",
 "logs": {
 "stdout": "<output log of command>",
 "stderr": "<error log of command>"
 }
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Connection: close
Content-Length: 70
Content-Type: application/json; charset=utf-8
Date: Tue, 09 Apr 2024 08:51:11 GMT
Etag: W/"86-ja15r8P5HJu72JcROfBTV4sAn2I"
X-Powered-By: Express

{
 "name": "<command-name",
 "status": "invalid",
 "logs": {
 "stdout": "",
 "stderr": ""
 }
}

2.7.4 Use

- 40/203 - Copyright © 2022 - 2024 The INTO-CPS Association

GET REQUEST TO /HISTORY

Returns the array of POST requests received so far. Both valid and invalid commands are recorded in the history.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

[
 {
 "name": "valid command"
 },
 {
 "name": "valid command"
 },
 {
 "name": "invalid command"
 }
]

2.7.4 Use

- 41/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.8 Examples

2.8.1 DTaaS Examples

There are some example digital twins created for the DTaaS software. You can peruse these examples and follow the steps given in this
Examples section to experience features of the DTaaS software platform and understand best practices for managing digital twins within
the platform. Please see these slides and video to get an overview of these examples.

There are two demo vides available: CP-SENS project (slides and video) and Incubator (video). These two videos have been recorded using
DTaaS v0.5.0.

Copy Examples

The first step is to copy all the example code into your user workspace within the DTaaS. Use the given shell script to copy all the examples
into /workspace/examples directory.

Example List

The digital twins provided in examples vary in their complexity. It is best to use the examples in the following order.

Mass Spring Damper

Water Tank Fault Injection

Water Tank Model Swap

Desktop Robotti and RabbitMQ

Water Treatment Plant and OPC-UA

Three Water Tanks with DT Manager Framework

Flex Cell with Two Industrial Robots

Incubator

Firefighters in Emergency Environments

Mass Spring Damper with NuRV Runtime Monitor FMU

Water Tank Fault Injection with NuRV Runtime Monitor FMU

Incubator Co-Simulation with NuRV Runtime Monitor FMU

Incubator with NuRV Runtime Monitor as Service

Incubator with NuRV Runtime Monitor FMU as Service

DTaaS examples

1
2

wget https://raw.githubusercontent.com/INTO-CPS-Association/DTaaS-examples/main/getExamples.sh
bash getExamples.sh

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

2.8 Examples

- 42/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/20240917-Examples.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20240917-Examples-Recorded-web.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/20240917-CPSENS-demo.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20240917-CPSENS-demo-Recorded-web.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/Incubator-demo-web.mp4
https://github.com/INTO-CPS-Association/DTaaS-examples

2.8.2 Mass Spring Damper

Overview

The mass spring damper digital twin (DT) comprises two mass spring dampers and demonstrates how a co-simulation based DT can be
used within DTaaS.

Example Diagram

Example Structure

There are two simulators included in the study, each representing a mass spring damper system. The first simulator calculates the mass
displacement and speed of for a given force acting on mass . The second simulator calculates force given a displacement and speed of
mass . By coupling these simulators, the evolution of the position of the two masses is computed.

2.8.2 Mass Spring Damper

- 43/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

The co-sim.json and time.json are two DT configuration files used for executing the digital twin. You can change these two files to customize
the DT to your needs.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 17 in the workspace.

EXECUTE

Run the the Digital Twin. Since this is a co-simulation based digital twin, the Maestro co-simulation tool executes co-simulation using the
two FMU models.

Examine the results

The results can be found in the /workspace/examples/data/mass-spring-damper/output directory.

You can also view run logs in the /workspace/examples/digital_twins/mass-spring-damper.

TERMINATE PHASE

Terminate to clean up the debug files and co-simulation output files.

Asset Type Names of Assets Visibility Reuse in Other Examples

Models MassSpringDamper1.fmu Private Yes

MassSpringDamper2.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/mass-spring-damper/output directory

Clean Clears run logs and outputs

1 cd /workspace/examples/digital_twins/mass-spring-damper

1 chmod +x lifecycle/create

1 lifecycle/create

1 lifecycle/execute

1 lifecycle/terminate

2.8.2 Mass Spring Damper

- 44/203 - Copyright © 2022 - 2024 The INTO-CPS Association

References

More information about co-simulation techniques and mass spring damper case study are available in:

The source code for the models used in this DT are available in mass spring damper github repository.

1
2

Gomes, Cláudio, et al. "Co-simulation: State of the art."
arXiv preprint arXiv:1702.00686 (2017).

2.8.2 Mass Spring Damper

- 45/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example-mass_spring_damper

2.8.3 Water Tank Fault Injection

Overview

This example shows a fault injection (FI) enabled digital twin (DT). A live DT is subjected to simulated faults received from the
environment. The simulated faults is specified as part of DT configuration and can be changed for new instances of DTs.

In this co-simulation based DT, a watertank case-study is used; co-simulation consists of a tank and controller. The goal of which is to keep
the level of water in the tank between Level-1 and Level-2 . The faults are injected into output of the water tank controller
(Watertankcontroller-c.fmu) from 12 to 20 time units, such that the tank output is closed for a period of time, leading to the water level
increasing in the tank beyond the desired level (Level-2).

Example Diagram

2.8.3 Water Tank Fault Injection

- 46/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Example Structure

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

The multimodelFI.json and simulation-config.json are two DT configuration files used for executing the digital twin. You can change these two
files to customize the DT to your needs.

 The faults are defined in wt_fault.xml.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

Asset Type Names of Assets Visibility Reuse in Other Examples

Models watertankcontroller-c.fmu Private Yes

singlewatertank-20sim.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/water_tank_FI/output directory

Clean Clears run logs and outputs

1 cd /workspace/examples/digital_twins/water_tank_FI

1 chmod +x lifecycle/create

2.8.3 Water Tank Fault Injection

- 47/203 - Copyright © 2022 - 2024 The INTO-CPS Association

CREATE

Installs Open Java Development Kit 17 and pip dependencies. The pandas and matplotlib are the pip dependencies installated.

EXECUTE

Run the co-simulation. Generates the co-simulation output.csv file at /workspace/examples/data/water_tank_FI/output .

ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/water_tank_FI/output/plots/ .

Examine the results

The results can be found in the /workspace/examples/data/water_tank_FI/output directory.

You can also view run logs in the /workspace/examples/digital_twins/water_tank_FI.

TERMINATE PHASE

Clean up the temporary files and delete output plot

References

More details on this case-study can be found in the paper:

The fault-injection plugin is an extension to the Maestro co-orchestration engine that enables injecting inputs and outputs of FMUs in an
FMI-based co-simulation with tampered values. More details on the plugin can be found in fault injection git repository. The source code
for this example is also in the same github repository in a example directory.

1 lifecycle/create

1 lifecycle/execute

1 lifecycle/analyze

1 lifecycle/terminate

1
2
3
4

M. Frasheri, C. Thule, H. D. Macedo, K. Lausdahl, P. G. Larsen and
L. Esterle, "Fault Injecting Co-simulations for Safety,"
2021 5th International Conference on System Reliability and Safety (ICSRS),
Palermo, Italy, 2021.

2.8.3 Water Tank Fault Injection

- 48/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fault-injection-maestro
https://github.com/INTO-CPS-Association/fault-injection-maestro/blob/development/fi_example/README.md

2.8.4 Water Tank Model Swap

Overview

This example shows multi-stage execution and dynamic reconfiguration of a digital twin (DT). Two features of DTs are demonstrated here:

Fault injection into live DT

Dynamic auto-reconfiguration of live DT

The co-simulation methodology is used to construct this DT.

Example Structure

•

•

2.8.4 Water Tank Model Swap

- 49/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Configuration of assets

This example uses four models and one tool. The specific assets used are:

This DT has many configuration files. The DT is executed in two stages. There exist separate DT configuration files for each stage. The
following table shows the configuration files and their purpose.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the permission of files you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 17 and pip dependencies. The matplotlib pip package is also installated.

EXECUTE

This DT has two-stage execution. In the first-stage, a co-simulation is executed. The Watertankcontroller-c.fmu and
Singlewatertank-20sim.fmu models are used to execute the DT. During this stage, faults are injected into one of the models
(Watertankcontroller-c.fmu) and the system performance is checked.

Asset Type Names of Assets Visibility Reuse in Other Examples

Models Watertankcontroller-c.fmu Private Yes

Singlewatertank-20sim.fmu Private Yes

Leak_detector.fmu Private No

Leak_controller.fmu Private No

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Configuration file name Execution Stage Purpose

mm1. json stage-1 DT configuration

wt_fault.xml, FaultInject.mabl stage-1 faults injected into DT during stage-1

mm2.json stage-2 DT configuration

simulation-config.json Both stages Configuration for specifying DT execution time and output logs

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/water_tank_swap/output directory

Analyze Process the co-simulation output and produce plots

Clean Clears run logs, outputs and plots

1 cd /workspace/examples/digital_twins/water_tank_swap

1 chmod +x lifecycle/create

1 lifecycle/create

2.8.4 Water Tank Model Swap

- 50/203 - Copyright © 2022 - 2024 The INTO-CPS Association

In the second-stage, another co-simulation is run in which three FMUs are used. The FMUs used are: watertankcontroller,
singlewatertank-20sim, and leak_detector. There is an in-built monitor in the Maestro tool. This monitor is enabled during the stage and a
swap condition is set at the beginning of the second-stage. When the swap condition is satisfied, the Maestro swaps out
Watertankcontroller-c.fmu model and swaps in Leakcontroller.fmu model. This swapping of FMU models demonstrates the dynamic
reconfiguration of a DT.

The end of execution phase generates the co-simulation output.csv file at /workspace/examples/data/water_tank_swap/output .

ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/water_tank_FI/output/plots/ .

Examine the results

The results can be found in the workspace/examples/data/water_tank_swap/output directory.

You can also view run logs in the workspace/examples/digital_twins/water_tank_swap.

TERMINATE PHASE

Clean up the temporary files and delete output plot

References

The complete source of this example is available on model swap github repository.

The runtime model (FMU) swap mechanism demonstrated by the experiment is detailed in the paper:

The runtime reconfiguration of co-simulation by modifying the Functional Mockup Units (FMUs) used is further detailed in the paper:

1 lifecycle/execute

1 lifecycle/analyze

1 lifecycle/terminate

1
2

Ejersbo, Henrik, et al. "fmiSwap: Run-time Swapping of Models for
Co-simulation and Digital Twins." arXiv preprint arXiv:2304.07328 (2023).

1
2
3
4

Ejersbo, Henrik, et al. "Dynamic Runtime Integration of
New Models in Digital Twins." 2023 IEEE/ACM 18th Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, 2023.

2.8.4 Water Tank Model Swap

- 51/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/hejersbo/dtaas-wt-swap

2.8.5 Desktop Robotti with RabbitMQ

Overview

This example demonstrates bidirectional communication between a mock physical twin and a digital twin of a mobile robot (Desktop
Robotti). The communication is enabled by RabbitMQ Broker.

Example Structure

The mock physical twin of mobile robot is created using two python scripts

data/drobotti_rmqfmu/rmq-publisher.py

data/drobotti_rmqfmu/consume.py

The mock physical twin sends its physical location in (x,y) coordinates and expects a cartesian distance calculated from digital twin.

1.

2.

2.8.5 Desktop Robotti with RabbitMQ

- 52/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The rmq-publisher.py reads the recorded (x,y) physical coordinates of mobile robot. The recorded values are stored in a data file. These (x,y)
values are published to RabbitMQ Broker. The published (x,y) values are consumed by the digital twin.

The consume.py subscribes to RabbitMQ Broker and waits for the calculated distance value from the digital twin.

The digital twin consists of a FMI-based co-simulation, where Maestro is used as co-orchestration engine. In this case, the co-simulation is
created by using two FMUs - RMQ FMU (rabbitmq-vhost.fmu) and distance FMU (distance-from-zero.fmu). The RMQ FMU receives the (x,y)
coordinates from rmq-publisher.py and sends calculated distance value to consume.py. The RMQ FMU uses RabbitMQ broker for
communication with the mock mobile robot, i.e., rmq-publisher.py and consume.py. The distance FMU is responsible for calculating the
distance between (0,0) and (x,y). The RMQ FMU and distance FMU exchange values during co-simulation.

2.8.5 Desktop Robotti with RabbitMQ

- 53/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Digital Twin Configuration

This example uses two models, one tool, one data, and two scripts to create mock physical twin. The specific assets used are:

This DT has many configuration files. The coe.json and multimodel.json are two DT configuration files used for executing the digital twin.
You can change these two files to customize the DT to your needs.

The RabbitMQ access credentials need to be provided in multimodel.json . The rabbitMQ-credentials.json provides RabbitMQ access credentials
for mock PT python scripts. Please add your credentials in both these files.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 17 in the workspace. Also install the required python pip packages for rmq-publisher.py and
consume.py scripts.

EXECUTE

Run the python scripts to start mock physical twin. Also run the the Digital Twin. Since this is a co-simulation based digital twin, the
Maestro co-simulation tool executes co-simulation using the two FMU models.

Examine the results

The results can be found in the /workspace/examples/digital_twins/drobotti_rmqfmu directory.

Asset Type Names of Assets Visibility Reuse in Other Examples

Models distance-from-zero.fmu Private No

rmq-vhost.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Data drobotti_playback_data.csv private No

Mock PT rmq-publisher.py Private No

consume.py Private No

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool and pip packages for python scripts

Execute Runs both DT and mock PT

Clean Clears run logs and outputs

1 cd /workspace/examples/digital_twins/drobotti_rmqfmu

1 chmod +x lifecycle/create

1 lifecycle/create

1 lifecycle/execute

2.8.5 Desktop Robotti with RabbitMQ

- 54/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Executing the DT will generate and launch a co-simulation (RMQFMU and distance FMU), and two python scripts. One to publish data that
is read from a file. And one to consume what is sent by the distance FMU.

In this examples the DT will run for 10 seconds, with a stepsize of 100ms. Thereafter it is possible to examine the logs produce in
/workspace/examples/digital_twins/drobotti_rmqfmu/target . The outputs for each FMU, xpos and ypos for the RMQFMU, and the distance for the
distance FMU are recorded in the outputs.csv file. Other logs can be examined for each FMU and the publisher scripts. Note that, the
RMQFMU only sends data, if the current input is different to the previous one.

TERMINATE PHASE

Terminate to clean up the debug files and co-simulation output files.

References

The RabbitMQ FMU github repository contains complete documentation and source code of the rmq-vhost.fmu.

More information about the case study is available in:

1 lifecycle/terminate

1
2

Frasheri, Mirgita, et al. "Addressing time discrepancy between digital
and physical twins." Robotics and Autonomous Systems 161 (2023): 104347.

2.8.5 Desktop Robotti with RabbitMQ

- 55/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fmu-rabbitmq

2.8.6 Waste Water Plant with OPC-UA

Introduction

Waste water treatment (WWT) plants must comply with substance and species concentration limits established by regulation in order to
ensure the good quality of the water. This is usually done taking periodic samples that are analyzed in the laboratory. This means that
plant operators do not have continuous information for making decisions and, therefore, operation setpoints are set to higher values than
needed to guarantee water quality. Some of the processes involved in WWT plants consume a lot of power, thus adjusting setpoints could
significantly reduce energy consumption.

Physical Twin Overview

This example demonstrates the communication between a physical ultraviolet (UV) disinfection process (the tertiary treatment of a WWT
plant) and its digital twin, which is based on Computational Fluid Dynamics (CFD) and compartment models. The aim of this digital twin is
to develop "virtual sensors" that provide continuous information that facilitates the decision making process for the plant operator.

The physical twin of the waste water plant is composed of an ultraviolet channel controlled by a PLC that controls the power of the UV
lamps needed to kill all the pathogens of the flow. The channel has 3 groups of UV lamps, therefore the real channel (and is mathematical
model) is subdivided into 7 zones: 4 correspond to zones without UV lamps (2 for the entrance and exit of the channel + 2 zones between
UV lamps) and the 3 reamaining for the UV lamps.

The dose to be applied (related with the power) changes according to the residence time (computed from the measure of the volume flow)
and the UV intensity (measured by the intensity sensor).

The information of the volumetric flow and power (in the three parts of the channel) is transmitted to the PLC of the plant. Furthermore,
the PLC is working as OPC UA Server to send and receive data to and from an OPC UA Client. Additionally, some sizing parameters and
initial values are read from a spreadsheet filled in by the plant operator. In this case, the spreadsheet is an Open Office file (.ods) due to the
software installed in the SCADA PC. Some of the variables like initial concentration of disinfectant and pathogens are included, among

2.8.6 Waste Water Plant with OPC-UA

- 56/203 - Copyright © 2022 - 2024 The INTO-CPS Association

others. Some values defined by the plant operator correspond to input signals that are not currently being measured, but are expected to
be measured in the future.

Digital Twin Overview

The digital twin is a reduced model (developed in C) that solves physical conservation laws (mass, energy and momentum), but simplifies
details (geometry, mainly) to ensure real-time calculations and accurate results. The results are compared to the ones obtained by the CFD.
C solver developed is used by the OpenModelica model. OpenModelica converts it into the FMI standard, to be integrated in the OPC UA
Client (client-opcua.py).

2.8.6 Waste Water Plant with OPC-UA

- 57/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Digital Twin Configuration

In this example, a dummy model representation of the plant is used, instead of the real model. The simplified model (with not the real
equations) is developed in Open Modelica (Test_DTCONEDAR.mo). The FMU is generated from the Open Modelica interface to obtain the
needed binaries to run the FMU. It is possible to run an FMU previously generated, however, to ensure that we are using the right binaries
it is recommended to install Open Modelica Compiler and run script.mos to build the FMU from the Modelica file Test_DTCONEDAR.mo .

The FMU model description file (modelDescription.xml file inside Test_DTCONEDAR.fmu) has the information of the value references
configuration_freeopcua.ods has the information of the OPC-UA node IDs And both have in common the variable name

Asset Type Name of Asset Visibility Reuse in Other
Examples

Model Test_DTCONEDAR.mo private No

Data configuration_freopcua.ods private No

model_description.csv (generated by client-
asyncua.py)

private No

Mock OPC UA Server: opcua-mock-server.py private No

Tool OPC UA Client: client-opcua.py private No

FMU builder: create-fmu.mos private No

2.8.6 Waste Water Plant with OPC-UA

- 58/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The client python script (client-opcua.py) does the following actions:

Reads the variable names and the variable value references from the model description file of the Test_DTCONEDAR.FMU.

Reads configuration_freeopcua.ods to obtain opcua node IDs and assigns those node IDs to the variables read from the FMU

Read configuration_freeopcua.ods to fix initial values, parameters and some inputs (those inputs that are not being measured, a
reasonable value is assumed).

Read values from PLC using a client OPC.

Execute the algorithm with the FMPy library using the .fmu created from the compartment model (based on CFD)

Obtain results.

Send by OPC UA protocol the result values to the PLC, to visualize them in the SCADA and with the aim to improve the decision-making
process of the plant operator.

INPUT DATA VARIABLES

The configuration_freeopcua.ods date file is used for customizing the initial input data values used by the server.

•

•

•

•

•

•

•

2.8.6 Waste Water Plant with OPC-UA

- 59/203 - Copyright © 2022 - 2024 The INTO-CPS Association

DT CONFIG

The config.json specifies the configuration parameters for the OPC UA client.

2.8.6 Waste Water Plant with OPC-UA

- 60/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Optional parameters can be modified:

stop_time

step_size

record = True, if we want to save the results of the simulation

record_interval. Sometimes the simulation step_size is small and a the size of the results file can be too big. For instance, if the
simulation step_size is 0.01 seconds, we can increase the record_interval so as to reduce the result file size.

record_variables: we can specify the list of variables that we want to record.

enable_send = True, if we want to send results to the OPC UA Server.

Lifecycle Phases

The lifecycles that are covered include:

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts.

Now, run the following scripts:

INSTALL

Installs Open Modelica, Python 3.10 and the required pip dependencies

CREATE

Create Test_DTCONEDAR.fmu co-simulation model from `Test_DTCONEDAR.mo open modelica file.

EXECUTE

Start the mock OPC UA server in the background. Run the OPC UA client.

CLEAN

Remove the temporary files created by Open Modelica and output files generated by OPC UA client.

•

•

•

•

•

•

Lifecycle Phase Completed Tasks

Install Installs Open Modelica, Python 3.10 and the required pip dependencies

Create Create FMU from Open Modelica file

Execute Run OPC UA mock server and normal OPC-UA client

Clean Delete the temporary files

1 cd /workspace/examples/digital twins/opc-ua-waterplant

1 chmod +x lifecycle/*

1 lifecycle/install

1 lifecycle/create

1 lifecycle/execute

1 lifecycle/clean

2.8.6 Waste Water Plant with OPC-UA

- 61/203 - Copyright © 2022 - 2024 The INTO-CPS Association

References

More explanation about this example is available at:

Acknowledgements

The work on this example was done in a project subsidised thanks to the support grants for Agrupación Empresarial Innovadora (AEI) of
the Ministry of Industry, Trade and Tourism (MINCOTUR) with the aim of improving the competitiveness of small and medium-sized
enterprises within the Recovery, Transformation and Resilience Plan (PRTR) financed by the Next Generation EU (NGEU) funds, with Grant
Number: AEI-010500-2022b-196.

1
2
3
4
5

Royo, L., Labarías, A., Arnau, R., Gómez, A., Ezquerra, A., Cilla, I., &
Díez-Antoñazas, L. (2023). Improving energy efficiency in the tertiary
treatment of Alguazas WWTP (Spain) by means of digital twin development
based on Physics modelling . Cambridge Open Engage.
[doi:10.33774/coe-2023-1vjcw](https://doi.org/10.33774/coe-2023-1vjcw)

2.8.6 Waste Water Plant with OPC-UA

- 62/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.8.7 Three-Tank System Digital Twin

Overview

The three-tank system is a simple case study allows us to represent a system that is composed of three individual components that are
coupled in a cascade as follows: The first tank is connected to the input of the second tank, and the output of the second tank is connected
to the input of the third tank.

This example contains only the simulated components for demonstration purposes; therefore, there is no configuration for the connection
with the physical system.

The three-tank system case study is managed using the DTManager , which is packed as a jar library in the tools, and run from a java main
file. The DTManager uses Maestro as a slave for co-simulation, so it generates the output of the co-simulation.

The main file can be changed according to the application scope, i.e., the /workspace/examples/tools/three-tank/TankMain.java can be manipulated
to get a different result.

The /workspace/examples/models/three-tank/ folder contains the Linear.fmu file, which is a non-realistic model for a tank with input and output
and the TankSystem.aasx file for the schema representation with Asset Administration Shell. The three instances use the same .fmu file and
the same schema due to being of the same object class. The DTManager is in charge of reading the values from the co-simulation output.

2.8.7 Three-Tank System Digital Twin

- 63/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Example Structure

Digital Twin Configuration

This example uses two models, two tools, one data, and one script. The specific assets used are:

This DT has multiple configuration files. The coe.json and multimodel.json are used by Maestro tool. The tank1.conf, tank2.conf and
tank3.conf are the config files for three different instances of one model (Linear.fmu).

Asset Type Names of Assets Visibility Reuse in Other
Examples

Model Linear.fmu Private No

TankSystem.aasx Private No

Tool DTManager-0.0.1-Maestro.jar (wraps Maestro) Common Yes

maestro-2.3.0-jar-with-dependencies.jar (used by
DTManager)

Common Yes

TankMain.java (main script) Private No

Data outputs.csv Private No

2.8.7 Three-Tank System Digital Twin

- 64/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Lifecycle Phases

The lifecycles that are covered include:

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 11 and pip dependencies. Also creates DTManager tool (DTManager-0.0.1-Maestro.jar) from source code.

EXECUTE

Execute the three-tank digital twin using DTManager. DTManager in-turn runs the co-simulation using Maestro. Generates the co-
simulation output.csv file at /workspace/examples/data/three-tank/output .

TERMINATE

Stops the Maestro running in the background. Also stops any other jvm process started during execute phase.

CLEAN

Removes the output generated during execute phase.

Examining the results

Executing this Digital Twin will generate a co-simulation output, but the results can also be monitored from updating
the /workspace/examples/tools/three-tank/TankMain.java with a specific set of getAttributeValue commands, such as shown in the code.

That main file enables the online execution of the Digital Twin and its internal components.

The output of the co-simulation is generated to the /workspace/examples/data/three-tank/output folder.

In the default example, the co-simulation is run for 10 seconds in steps of 0.5 seconds. This can be modified for a longer period and
different step size. The output stored in outputs.csv contains the level, in/out flow, and leak values.

No data from the physical twin are generated/used.

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute The DT Manager executes the three-tank digital twin and produces output in data/three-tank/output directory

Terminate Terminating the background processes and cleaning up the output

1 cd /workspace/examples/digital twins/three-tank

1 chmod +x lifecycle/create

1 lifecycle/create

1 lifecycle/execute

1 lifecycle/terminate

1 lifecycle/terminate

2.8.7 Three-Tank System Digital Twin

- 65/203 - Copyright © 2022 - 2024 The INTO-CPS Association

References

More information about the DT Manager is available at:

1
2
3
4
5

D. Lehner, S. Gil, P. H. Mikkelsen, P. G. Larsen and M. Wimmer,
"An Architectural Extension for Digital Twin Platforms to Leverage
Behavioral Models," 2023 IEEE 19th International Conference on
Automation Science and Engineering (CASE), Auckland, New Zealand,
2023, pp. 1-8, doi: 10.1109/CASE56687.2023.10260417.

2.8.7 Three-Tank System Digital Twin

- 66/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

Overview

The flex-cell Digital Twin is a case study with two industrial robotic arms, a UR5e and a Kuka LBR iiwa 7, working in a cooperative setting
on a manufacturing cell.

The case study focuses on the robot positioning in the discrete cartesian space of the flex-cell working space. Therefore, it is possible to
send (X,Y,Z) commands to both robots, which refer to the target hole and height they want should move to.

The flex-cell case study is managed using the TwinManager (formerly DT Manager), which is packed as a jar library in the tools, and run from a
java main file.

The TwinManager uses Maestro as a slave for co-simulation, so it generates the output of the co-simulation and can interact with the real
robots at the same time (with the proper configuration and setup). The mainfile can be changed according to the application scope, i.e., the
/workspace/examples/tools/flex-cell/FlexCellDTaaS.java can be manipulated to get a different result.

The /workspace/examples/models/flex-cell/ folder contains the .fmu files for the kinematic models of the robotic arms, the .urdf files for
visualization (including the grippers), and the .aasx files for the schema representation with Asset Administration Shell.

The case study also uses RabbitMQFMU to inject values into the co-simulation, therefore, there is the rabbitmqfmu in the models folder as
well. Right now, RabbitMQFMU is only used for injecting values into the co-simulation, but not the other way around. The TwinManager is in
charge of reading the values from the co-simulation output and the current state of the physical twins.

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

- 67/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Example Structure

The example structure represents the components of the flex-cell DT implementation using the TwinManager architecture.

The TwinManager orchestrates the flex-cell DT via the Flex-cell DT System, which is composed of 2 smaller Digital Twins, namely, the DT
UR5e and the DT Kuka lbr iiwa 7. The TwinManager also provides the interface for the Physical Twins, namely, PT UR5e and PT Kuka lbr
iiwa 7. Each Physical Twin and Digital Twin System has a particular endpoint (with a different specialization), which is initialized from
configuration files and data model (twin schema).

The current endpoints used in this implementation are:

The Flex-cell DT System uses another configuration to be integrated with the Maestro co-simulation engine.

In the lower part, the Flex-cell System represents the composed physical twin, including the two robotic arms and controller and the Flex-
cell Simulation is the mock-up representation for the real system, which is implemented by FMU blocks and their connections.

Digital or Physical Twin Endpoint

Flex-cell DT System MaestroEndpoint

DT UR5e FMIEndpoint

DT Kuka lbr iiwa 7 FMIEndpoint

PT UR5e MQTTEndpoint and RabbitMQEndpoint

PT Kuka lbr iiwa 7 MQTTEndpoint and RabbitMQEndpoint

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

- 68/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

- 69/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Digital Twin Configuration

This example uses seven models, five tools, six data files, two functions, and one script. The specific assets used are:

Asset Type Names of Assets Visibility Reuse in Other Examples

Model kukalbriiwa_model.fmu Private No

kuka_irw_gripper_rg6.urdf Private No

kuka.aasx Private No

ur5e_model.fmu Private No

ur5e_gripper_2fg7.urdf Private No

ur5e.aasx Private No

rmq-vhost.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

TwinManagerFramework-0.0.2.jar Private Yes

urinterface (installed with pip) Private No

kukalbrinterface Private No

robots_flexcell Private No

FlexCellDTaaS.java (main script) Private No

Data publisher-flexcell-physical.py Private No

ur5e_mqtt_publisher.py Private No

connections.conf Private No

outputs.csv Private No

kukalbriiwa7_actual.csv Private No

ur5e_actual.csv Private No

Function plots.py Private No

prepare.py Private No

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

- 70/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Lifecycle Phases

The lifecycles that are covered include:

Installation of dependencies in the create phase.

Preparing the credentials for connections in the prepare phase.

Execution of the experiment in the execution phase.

Saving experiments in the save phase.

Plotting the results of the co-simulation and the real data coming from the robots in the analyze phase.

Terminating the background processes and cleaning up the outputs in the termination phase.

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

This example requires Java 11. The create script installs Java 11; however if you have already installed other Java versions, your default
java might be pointing to another version. You can check and modify the default version using the following commands.

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 11 and a python virtual environment with pip dependencies. Also builds the TwinManager tool
(TwinManagerFramework-0.0.2.jar) from source code.

PREPARE

Configure different assets of DT with these credentials. The functions/flex-cell/prepare.py script is used for this purpose. The only thing
needed to set up the connection is to update the file /workspace/examples/data/flex-cell/input/connections.conf with the connection parameters
for MQTT and RabbitMQ and then execute the prepare script.

1.

2.

3.

4.

5.

6.

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool, Compiles source code of TwinManager to create a usable jar
package (used as tool)

Prepare Takes the RabbitMQ and MQTT credentials in connections.conf file and configures different assets of DT.

Execute The TwinManager executes the flex-cell DT and produces output in data/flex-cell/output directory

Save Save the experimental results

Analyze Uses plotting functions to generate plots of co-simulation results

Terminate Terminating the background processes

Clean Cleans up the output data

1 cd /workspace/examples/digital_twins/flex-cell

1 chmod +x lifecycle/create

1
2

java -version
update-alternatives --config java

1 lifecycle/create

1 lifecycle/prepare

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

- 71/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The following files are updated with the configuration information:

/workspace/examples/digital_twins/flex-cell/kuka_actual.conf

/workspace/examples/digital_twins/flex-cell/ur5e_actual.conf

/workspace/examples/data/flex-cell/input/publisher-flexcell-physical.py

modelDescription.xml for the RabbitMQFMU require special credentials to connect to the RabbitMQ and the MQTT brokers.

EXECUTE

Execute the flex-cell digital twin using TwinManager. TwinManager in-turn runs the co-simulation using Maestro. Generates the co-
simulation output.csv file at /workspace/examples/data/flex-cell/output . The execution needs to be stopped with control + c since the
TwinManager runs the application in a non-stopping loop.

SAVE

Each execution of the DT is treated as a single run. The results of one execution are saved as time-stamped co-simulation output file in The
TwinManager executes the flex-cell digital twin and produces output in data/flex-cell/output/saved_experiments directory.

The execute and save scripts can be executed in that order any number of times. A new file data/flex-cell/output/saved_experiments directory
with each iteration.

ANALYZE

There are dedicated plotting functions in functions/flex-cell/plots.py . This script plots the co-simulation results against the recorded values
from the two robots.

TERMINATE

Stops the Maestro running in the background. Also stops any other jvm process started during execute phase.

CLEAN

Removes the output generated during execute phase.

Examining the results

Executing this Digital Twin will generate a co-simulation output, but the results can also be monitored from updating the /workspace/
examples/tools/flex-cell/FlexCellDTaaS.java with a specific set of getAttributeValue commands, such as shown in the code. That main file
enables the online execution and comparison on Digital Twin and Physical Twin at the same time and at the same abstraction level.

The output is generated to the /workspace/examples/data/flex-cell/output folder. In case a specific experiments is to be saved, the save lifecycle
script stores the co-simulation results into the /workspace/examples/data/flex-cell/output/saved_experiments folder.

In the default example, the co-simulation is run for 11 seconds in steps of 0.2 seconds. This can be modified for a longer period and
different step size. The output stored in outputs.csv contains the joint position of both robotic arms and the current discrete (X,Y,Z) position
of the TCP of the robot. Additional variables can be added, such as the discrete (X,Y,Z) position of the other joints.

When connected to the real robots, the tools urinterface and kukalbrinterface log their data at a higher sampling rate.

1.

2.

3.

4.

1 lifecycle/execute

1 lifecycle/save

1 lifecycle/analyze

1 lifecycle/terminate

1 lifecycle/clean

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

- 72/203 - Copyright © 2022 - 2024 The INTO-CPS Association

References

The RabbitMQ FMU github repository contains complete documentation and source code of the rmq-vhost.fmu.

More information about the TwinManager (formerly DT Manager) and the case study is available in:

D. Lehner, S. Gil, P. H. Mikkelsen, P. G. Larsen and M. Wimmer, "An Architectural Extension for Digital Twin Platforms to Leverage Behavioral
Models," 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 2023, pp. 1-8, doi:
10.1109/CASE56687.2023.10260417.

S. Gil, P. H. Mikkelsen, D. Tola, C. Schou and P. G. Larsen, "A Modeling Approach for Composed Digital Twins in Cooperative Systems," 2023
IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Sinaia, Romania, 2023, pp. 1-8, doi: 10.1109/
ETFA54631.2023.10275601.

S. Gil, C. Schou, P. H. Mikkelsen, and P. G. Larsen, “Integrating Skills into Digital Twins in Cooperative Systems,” in 2024 IEEE/SICE
International Symposium on System Integration (SII), 2024, pp. 1124–1131, doi: 10.1109/SII58957.2024.10417610.

1.

2.

3.

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

- 73/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fmu-rabbitmq

2.8.9 Incubator Digital Twin

Overview

This is a case study of an Incubator with the purpose of understanding the steps and processes involved in developing a digital twin
system. This incubator is an insulated container with the ability to keep a temperature and heat, but not cool. A picture of the incubator is
given below.

The overall purpose of the system is to reach a certain temperature within a box and keep the temperature regardless of content. An
overview of the system can be seen below:

2.8.9 Incubator Digital Twin

- 74/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The system consists of:

1x styrofoam box in order to have an insulated container

1x heat source to heat up the content within the Styrofoam box.

1x fan to distribute the heating within the box

2x temperature sensor to monitor the temperature within the box

1x temperature Sensor to monitor the temperature outside the box

1x controller to actuate the heat source and the fan and read sensory information from the temperature sensors, and communicate with
the digital twin.

The original repository for the example can be found: Original repository. This trimmed version of the codebase does not have the
following:

docker support

tests

datasets

The original repository contains the complete documentation of the example, including the full system architecture, instructions for
running with a physical twin, and instructions for running a 3D visualization of the incubator.

Temperature...Heater

Content

Fan Temperature...

Insula...

Digital...

Serial /...

Contro...

Viewer does not support full SVG 1.1

•

•

•

•

•

•

•

•

•

2.8.9 Incubator Digital Twin

- 75/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example_digital-twin_incubator/

Digital Twin Structure

This diagrams shows the main components and the interfaces they use to communicate. All components communicate via the RabbitMQ
message exchange, and the data is stored in a time series database. The RabbitMQ and InfluxDB are platform services hosted by the DTaaS.

The Incubator digital twin is a pre-packaged digital twin. It can be used as is or integrated with other digital twins.

The mock physical twin is executed from incubator/mock_plant/real_time_model_solver.py script.

Digital Twin Configuration

This example uses a plethora of Python scripts to run the digital twin. By default it is configured to run with a mock physical twin.
Furthermore, it depends on a RabbitMQ and an InfluxDB instances.

There is one configuration file: simulation.conf . The RabbitMQ and InfluxDB configuration parameters need to be updated.

Lifecycle Phases

The lifecycles that are covered include:

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

CREATE

Potentially updates the system and installs Python dependencies.

(Mock) PhysicalTwin DigitalTwin

low_level_driver_server

<<MessageExchange>>...

«TimeSeriesDB»...

Controller...Plant... KalmanFilter... SelfAdaptationManager... InfluxDataRecorder...

Legend:

Component... interface... interface re...

Lifecycle Phase Completed Tasks

Create Potentially updates the system and installs Python dependencies

Execute Executes the Incubator digital twin and produces output in the terminal and in incubator/log.log.

Clean Removes the log file.

1 cd /workspace/examples/digital_twins/incubator

1 chmod +x lifecycle/create

1 lifecycle/create

2.8.9 Incubator Digital Twin

- 76/203 - Copyright © 2022 - 2024 The INTO-CPS Association

EXECUTE

Executes the Incubator digital twin with a mock physical twin. Pushes the results in the terminal, incubator/log.log, and in InfluxDB.

CLEAN

Removes the output log file.

Examining the results

After starting all services successfully, the controller service will start producing output that looks like the following:

An InfluxDB dashboard can be setup based on incubator/digital_twin/data_access/influxdbserver/dashboards/incubator_data.json . If the dashboard
on the InfluxDB is setup properly, the following visualization can be seen:

References

 Forked from: Incubator repository with commit ID: 989ccf5909a684ad26a9c3ec16be2390667643aa

To understand what a digital twin is, we recommend you read/watch one or more of the following resources:

Feng, Hao, Cláudio Gomes, Casper Thule, Kenneth Lausdahl, Alexandros Iosifidis, and Peter Gorm Larsen. “Introduction to Digital Twin
Engineering.” In 2021 Annual Modeling and Simulation Conference (ANNSIM), 1–12. Fairfax, VA, USA: IEEE, 2021. https://doi.org/10.23919/
ANNSIM52504.2021.9552135.

Video recording of presentation by Claudio Gomes

1 lifecycle/execute

1 lifecycle/clean

1
2
3
4
5
6

time execution_interval elapsed heater_on fan_on room box_air_temperature state
19/11 16:17:59 3.00 0.01 True False 10.70 19.68 Heating
19/11 16:18:02 3.00 0.03 True True 10.70 19.57 Heating
19/11 16:18:05 3.00 0.01 True True 10.70 19.57 Heating
19/11 16:18:08 3.00 0.01 True True 10.69 19.47 Heating
19/11 16:18:11 3.00 0.01 True True 10.69 19.41 Heating

1.

2.

2.8.9 Incubator Digital Twin

- 77/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example_digital-twin_incubator/
https://doi.org/10.23919/ANNSIM52504.2021.9552135
https://doi.org/10.23919/ANNSIM52504.2021.9552135
https://videos.ida.dk/media/Introduction+to+Digital+Twin+Engineering+with+Cl-C3-A1udio+-C3-82ngelo+Gon-C3-A7alves+Gomes-2C+Aarhus+Universitet/1_7r1j05g8/256930613

2.8.10 Firefighter Mission in a Burning Building

In an firefighter mission it is important to monitor the oxygen levels of each firefighters Self Contained Breating Aparatus (SCBA) in
context of their mission.

Physical Twin Overview

Image: Schematic overview of a firefighter mission. Note the mission commander on the lower left documenting the air supply pressure
levels provided by radio communication from the firefighters inside and around the burning building. This image was created with the
assistance of DALL·E.

We assume the following scenario:

a set of firefighters work to extinguish a burning building

they each use an SCBA with pressurised oxygen to breath

a mission commander on the outside coordinates the efforts and surveills the oxygen levels

Digital Twin Overview

In this example a monitor is implemented, that calculates how much time the firefighers have left, until they need to leave the building. To
that end, the inputs used are:

3D-model of the building in which the mission takes place,

pressure data of a firefighters SCBA and

firefighters location inside of the building

are used to estimate:

the shortest way out,

how much time this will need and

how much time is left until all oxygen from the SCBA is used up.

•

•

•

•

•

•

•

•

•

2.8.10 Firefighter Mission in a Burning Building

- 78/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The remaining mission time is monitored and the firefighter receive a warning if it drops under a certain threshold.

This example is an implementation of the the paper Digital Twin for Rescue Missions--a Case Study by Leucker et al.

QUICK CHECK

Before runnnig this example please make sure the following files are at the correct locations:

DIGITAL TWIN CONFIGURATION

All configuration for this example is contained in digital_twins/o5g/config .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/workspace/examples/
 data/o5g/input/
 runTessla.sh
 sensorSimulation.py
 telegraf.conf

 models/
 lab.ifc
 makefmu.mos
 PathOxygenEstimate.mo

 tools/
 graphToPath.py
 ifc_to_graph
 pathToTime.py
 tessla-telegraf-connector/
 tessla-telegraf-connector/
 tessla.jar
 specification.tessla (run-time specification)

 digital_twins/o5g/
 main.py
 config
 lifecycle/ (scripts)

2.8.10 Firefighter Mission in a Burning Building

- 79/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://ceur-ws.org/Vol-3507/paper4.pdf
https://ceur-ws.org/Vol-3507/paper4.pdf

To use the MQTT-Server, account information needs to be provided. The topics are set to their default values, which allow the DT to access
the mock physical twins sensor metrics and to send back alerts.

This example uses InfuxDB as a data storage, which will need to be configured to use your Access data. The following configuration steps
are needed:

Log into the InfluxDB Web UI

Obtain org name (is below your username in the sidebar)

Create a data bucket if you don't have one already in Load Data -> Buckets

Create an API access token in Load Data -> API Tokens , Copy and save this token somewhere immediately, you can not access it later!

Lifecycle Phases

The lifecycles that are covered include:

Run the example

INSTALL

Run the install script by executing

This will install all the required dependencies from apt and pip, as well as Open Modelica, Rust, Telegraf and the required pip
dependencies from their respective repos.

Create

Run the create script by executing

This will compile the modelica model to an Functional Mockup Unit (FMU) for the correct platform.

1
2
3
4
5
6
7
8

export O5G_MQTT_SERVER=
export O5G_MQTT_PORT=
export O5G_MQTT_USER=
export O5G_MQTT_PASS=

export O5G_MQTT_TOPIC_SENSOR='vgiot/ue/metric'
export O5G_MQTT_TOPIC_AIR_PREDICTION='vgiot/dt/prediction'
export O5g_MQTT_TOPIC_ALERT='vgiot/dt/alerts'

•

•

•

•

1
2
3
4
5

export O5G_INFLUX_SERVER=
export O5G_INFLUX_PORT=
export O5G_INFLUX_TOKEN=
export O5G_INFLUX_ORG=
export O5G_INFLUX_BUCKET=

Lifecycle Phase Completed Tasks

Install Installs Open Modelica, Rust, Telegraf and the required pip dependencies

Create Create FMU from Open Modelica file

Execute Execute the example in the background tmux terminal session

Terminate Terminate the tmux terminal session running in the background

Clean Delete the temporary files

1 lifecycle/install

1 lifecycle/create

2.8.10 Firefighter Mission in a Burning Building

- 80/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Exceute

To run the Digital Twin execute

This will start all the required components in a single tmux session called o5g in the background. To view the running Digital Twin attatch
to this tmux session by executing

To detatch press Ctrl-b followed by d .

The tmux session contains 4 components of the digital twin:

Examine the Results

For additional mission awareness, we recommend utilising the Influx data visualisation. We provide a dashboard configuration in the file
influx-dashoard.json. Log in to your Influx Server to import (usually port 8086). A screenshot of the dashboard is given here.

1 lifecycle/execute

1 tmux a -t o5g

Panel location Purpose

Top Left Sensor simulator generating random location and O2-level data

Top Right Main Digital Twin receives the sensor data and calculates an estimate of how many minutes of air remain

Bottom Left Telegraf to convert between different message formats, also displays all messages between components

Bottom Right TeSSLa monitor raises an alarm, if the remaining time is to low.

2.8.10 Firefighter Mission in a Burning Building

- 81/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The data gets stored in o5g->prediction->air-remaining->37ae3e4fb3ea->true->vgiot/dt/prediction variable of the InfluxDB. In addition to importing
dashboard configuration given above, it is possible to create your custom dashboards using the stored data.

Terminate

To stop the all components and close the tmux session execute

Clean

To remove temoporary files created during execution

1 lifecycle/terminate

1 lifecycle/clean

2.8.10 Firefighter Mission in a Burning Building

- 82/203 - Copyright © 2022 - 2024 The INTO-CPS Association

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

Overview

This digital twin is derives from te Mass String Damper digital twin.

The mass spring damper digital twin (DT) comprises two mass spring dampers and demonstrates how a co-simulation based DT can be
used within DTaaS. This version of the example is expanded with a monitor generated by NuRV. More information about NuRV is available
here.

Example Diagram

Example Structure

There are two simulators included in the study, each representing a mass spring damper system. The first simulator calculates the mass
displacement and speed of for a given force acting on mass . The second simulator calculates force given a displacement and speed of
mass . By coupling these simulators, the evolution of the position of the two masses is computed.

Additionally, a monitor is inserted in the simulation to check at runtime whether the displacement of the two masses stays below a
maximum threshold.

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

- 83/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

The co-sim.json and time.json are two DT configuration files used for executing the digital twin. You can change these two files to customize
the DT to your needs.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 17 in the workspace.

Generates and compiles the monitor FMU from the NuRV specification

EXECUTE

Run the the Digital Twin. Since this is a co-simulation based digital twin, the Maestro co-simulation tool executes co-simulation using the
two FMU models.

Asset Type Names of Assets Visibility Reuse in Other Examples

Models MassSpringDamper1.fmu Private Yes

MassSpringDamper2.fmu Private Yes

m2.fmu Private No

RtI.fmu Private Yes

Specification m2.smv Private No

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool
Generates and compiles the monitor FMU

Execute Produces and stores output in data/mass-spring-damper-monitor/output directory

Clean Clears run logs and outputs

1 cd /workspace/examples/digital_twins/mass-spring-damper-monitor

1 chmod +x lifecycle/create

•

•

1 lifecycle/create

1 lifecycle/execute

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

- 84/203 - Copyright © 2022 - 2024 The INTO-CPS Association

ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/mass-spring-damper-monitor/output/plots .

A sample plot is given here.

In the plot, three color-coded indicators are used to represent different values. The blue line shows the distance between the two masses,
while the green indicates the monitor's verdict. A red dashed line serves as a reference point, marking the distance checked by the
monitor. Since the distance of the masses is always below the threshold, the output of the monitor is fixed to unknown (0).

Examine the results

The results can be found in the /workspace/examples/data/mass-spring-damper-monitor/output directory.

You can also view run logs in the /workspace/examples/digital_twins/mass-spring-damper-monitor.

TERMINATE PHASE

Terminate to clean up the debug files and co-simulation output files.

1 lifecycle/analyze

1 lifecycle/terminate

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

- 85/203 - Copyright © 2022 - 2024 The INTO-CPS Association

References

More information about co-simulation techniques and mass spring damper case study are available in:

The source code for the models used in this DT are available in mass spring damper github repository.

1
2

Gomes, Cláudio, et al. "Co-simulation: State of the art."
arXiv preprint arXiv:1702.00686 (2017).

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

- 86/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example-mass_spring_damper

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

Overview

This example shows a fault injection (FI) enabled digital twin (DT). A live DT is subjected to simulated faults received from the
environment. The simulated faults is specified as part of DT configuration and can be changed for new instances of DTs. This version of the
example is expanded with a monitor generated by NuRV. More information about NuRV is available here.

In this co-simulation based DT, a watertank case-study is used; co-simulation consists of a tank and controller. The goal of which is to keep
the level of water in the tank between Level-1 and Level-2 . The faults are injected into output of the water tank controller
(Watertankcontroller-c.fmu) from 12 to 20 time units, such that the tank output is closed for a period of time, leading to the water level
increasing in the tank beyond the desired level (Level-2). Additionally, a monitor is inserted in the simulation to check at runtime whether
the level of the water stays below a maximum threshold.

Example Diagram

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

- 87/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

Example Structure

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

The multimodelFI.json and simulation-config.json are two DT configuration files used for executing the digital twin. You can change these two
files to customize the DT to your needs.

 The faults are defined in wt_fault.xml.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

Asset Type Names of Assets Visibility Reuse in Other Examples

Models watertankcontroller-c.fmu Private Yes

singlewatertank-20sim.fmu Private Yes

m1.fmu Private No

RtI.fmu Private Yes

Specification m1.smv Private No

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool
Generates and compiles the monitor FMU

Execute Produces and stores output in data/water_tank_FI_monitor/output directory

Clean Clears run logs and outputs

1 cd /workspace/examples/digital_twins/water_tank_FI_monitor

1 chmod +x lifecycle/create

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

- 88/203 - Copyright © 2022 - 2024 The INTO-CPS Association

CREATE

Installs Open Java Development Kit 17 and pip dependencies. The pandas and matplotlib are the pip dependencies installated. The
monitor FMU from the NuRV specification is generated and compiled.

EXECUTE

Run the co-simulation. Generates the co-simulation output.csv file at /workspace/examples/data/water_tank_FI_monitor/output .

ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/water_tank_FI_monitor/output/plots/ .

A sample plot is given here.

In the plot, four color-coded indicators are used to represent different values. The blue line shows the water tank level, while orange
represents the control output and green indicates the monitor's verdict. A red dashed line serves as a reference point, marking the level
checked by the monitor. As the water level exceeds this threshold, the monitor's verdict changes from unknown (0) to false (2).

Examine the results

The results can be found in the /workspace/examples/data/water_tank_FI_monitor/output directory.

You can also view run logs in the /workspace/examples/digital_twins/water_tank_FI_monitor.

1 lifecycle/create

1 lifecycle/execute

1 lifecycle/analyze

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

- 89/203 - Copyright © 2022 - 2024 The INTO-CPS Association

TERMINATE PHASE

Clean up the temporary files and delete output plot

References

More details on this case-study can be found in the paper:

The fault-injection plugin is an extension to the Maestro co-orchestration engine that enables injecting inputs and outputs of FMUs in an
FMI-based co-simulation with tampered values. More details on the plugin can be found in fault injection git repository. The source code
for this example is also in the same github repository in a example directory.

1 lifecycle/terminate

1
2
3
4

M. Frasheri, C. Thule, H. D. Macedo, K. Lausdahl, P. G. Larsen and
L. Esterle, "Fault Injecting Co-simulations for Safety,"
2021 5th International Conference on System Reliability and Safety (ICSRS),
Palermo, Italy, 2021.

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

- 90/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fault-injection-maestro
https://github.com/INTO-CPS-Association/fault-injection-maestro/blob/development/fi_example/README.md

2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor

Overview

This example demonstrates how to validate some digital twin components using FMU monitors (in this example, the monitors are
generated with NuRV[1]).

Simulated scenario

This example validates some components of the Incubator digital twin, by performing a simulation in which the commponents are
wrapped inside FMUs, and are then inspected at runtime by some a FMU monitor generated by NuRV. Please note that the link to
Incubator digital twin is only provided to know the details of the incubator physical twin. The digital twin (DT) presented here is a co-
simulation DT of the Incubator.

The input data for the simulation is generated by a purpose-built FMU component named source, which supplies testing data to the
anomaly detector, simulating an anomaly occurring at time t=60s. An additional component, watcher, is employed to verify whether the
energy saver activates in response to an anomaly reported by the anomaly detector.

The output of the watcher is the passed to the monitor, which ensures that when an anomaly is detected, the energy saver activates within
a maximum of three simulation cycles.

Example structure

A diagram depicting the logical software structure of the example can be seen below.

Digital Twin configuration

The example uses the following assets:

The safe-operation.smv file contains the default monitored specification as described in the Simulated scenario section.

Asset Type Names of Assets Visibility Reuse in other Examples

Models anomaly_detection.fmu Private No

energy_saver.fmu Private No

Source.fmu Private No

Watcher.fmu Private No

Specification safe-operation.smv Private No

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor

- 91/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Lifecycle phases

The lifecycle phases for this example include:

If required, change the execute permissions of lifecycle scripts you need to execute. This can be done using the following command

where {script} is the name of the script, e.g. create, execute etc.

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 17 in the workspace.

Generates and compiles the monitor FMU from the NuRV specification

EXECUTE

Run the the Digital Twin. Since this is a co-simulation based digital twin, the Maestro co-simulation tool executes co-simulation using the
FMU models.

ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/incubator-NuRV-monitor-validation/output/plots .

A sample plot is given here.

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool
Generates and compiles the monitor FMU

Execute Produces and stores output in data/incubator-NuRV-monitor-validation/output directory

Clean Clears run logs and outputs

1 chmod +x lifecycle/{script}

1 cd /workspace/examples/digital_twins/incubator-NuRV-monitor-validation

1 chmod +x lifecycle/create

•

•

1 lifecycle/create

1 lifecycle/execute

1 lifecycle/analyze

2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor

- 92/203 - Copyright © 2022 - 2024 The INTO-CPS Association

In the plot, four color-coded indicators provide a visual representation of distinct values. The blue line depicts the simulated temperature,
while orange one represents the temperature estimate. A red dashed line indicates the target temperature set by the energy saver
component. The green line shows the monitor's output verdict. As observed, when there is a disparity between the estimated and actual
temperatures, the energy saver adjusts the target temperature downward, indicating that the component is working properly. Thus, the
output of the monitor is fixed at unknown (0), signifying that the monitoring property is not violated.

Examine the results

The results can be found in the /workspace/examples/data/incubator-NuRV-monitor-validation/output directory where the logs are also
included.

Figures of the output results can be found in the /workspace/examples/data/incubator-NuRV-monitor-validation/output directory.

TERMINATE PHASE

Terminate to clean up the debug files and co-simulation output files.

References

More information about NuRV is available here.

1 lifecycle/terminate

1.

2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor

- 93/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

2.8.14 Incubator Digital Twin with NuRV monitoring service

Overview

This example demonstrates how a runtime monitoring service (in this example NuRV[1]) can be connected with the Incubator digital twin
to verify runtime behavior of the Incubator.

Simulated scenario

This example simulates a scenario where the lid of the Incubator is removed and later put back on. The Incubator is equipped with
anomaly detection capabilities, which can detect anomalous behavior (i.e. the removal of the lid). When an anomaly is detected, the
Incubator triggers an energy saving mode where the heater is turned off.

From a monitoring perspective, we wish to verify that within 3 simulation steps of an anomaly detection, the energy saving mode is
turned on. To verify this behavior, we construct the property: . Whenever a True or False verdict is produced by the monitor, it is reset,
allowing for the detection of repeated satisfaction/violation detections of the property.

The simulated scenario progresses as follows:

Initialization: The services are initialized and the Kalman filter in the Incubator is given 2 minutes to stabilize. Sometimes, the anomaly
detection algorithm will detect an anomaly at startup even though the lid is still on. It will disappear after approx 15 seconds.

After 2 minutes: The lid is lifted and an anomaly is detected. The energy saver is turned on shortly after

After another 30 seconds: The energy saver is manually disabled producing a False verdict.

After another 30 seconds: The lid is put back on and the anomaly detection is given time to detect that the lid is back on. The simulation
then ends.

Example structure

A diagram depicting the logical software structure of the example can be seen below.

The execute.py script is responsible for orchestrating and starting all the relevant services in this example. This includes the Incubator DT,
CORBA naming service (omniNames) and the NuRV monitor server as well as implementing the Monitor connector component that
connects the DT output to the NuRV monitor server.

The NuRV monitor server utilizes a CORBA naming service where it registers under a specific name. A user can then query the naming
service for the specific name, to obtain a reference to the monitor server. For more information on how the NuRV monitor server works,
please refer to [1].

After establishing connection with the NuRV monitor server, the Incubator DT is started and a RabbitMQ client is created that subscribes to
changes in the anomaly and energy_saving states of the DT. Each time an update is received of either state, the full state (the new updated
state and the previous other state) is pushed to the NuRV monitor server whereafter the verdict is printed to the console.

Digital Twin configuration

Before running the example, please configure the simulation.conf file with your RabbitMQ credentials.

•

•

•

•

2.8.14 Incubator Digital Twin with NuRV monitoring service

- 94/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The example uses the following assets:

The safe-operation.smv file contains the default monitored specification as described in the Simulated scenario section. These can be
configured as desired.

Lifecycle phases

The lifecycle phases for this example include:

If required, change the execute permissions of lifecycle scripts you need to execute. This can be done using the following command

where {script} is the name of the script, e.g. create, execute etc.

Running the example

To run the example, first run the following command in a terminal:

Then, first execute the create script (this can take a few mins depending on your network connection) followed by the execute script using
the following command:

The execute script will then start outputting system states and the monitor verdict approx every 3 seconds. The output is printed as follows
"State: {anomaly state} & {energy_saving state}, verdict: {Verdict}" where "anomaly" indicates that an anomaly is detected and "!
anomaly" indicates that an anomaly is not currently detected. The same format is used for the energy_saving state.

The monitor verdict can be True, False or Unknown, where the latter indicates that the monitor does not yet have sufficient information to
determine the satisfaction of the property.

Asset Type Names of Assets Visibility Reuse in other Examples

Service common/services/NuRV_orbit Common Yes

DT common/digital_twins/incubator Common Yes

Specification safe-operation.smv Private No

Script execute.py Private No

Lifecycle phase Completed tasks

create Downloads the necessary tools and creates a virtual python environment with the necessary dependencies

execute Runs a python script that starts up the necessary services as well as the Incubator simulation. Various status
messages are printed to the console, including the monitored system states and monitor verdict.

clean Removes created data directory and incubator log files.

1 chmod +x lifecycle/{script}

1 cd /workspace/examples/digital_twins/incubator-monitor-server/

1 lifecycle/{script}

2.8.14 Incubator Digital Twin with NuRV monitoring service

- 95/203 - Copyright © 2022 - 2024 The INTO-CPS Association

An example output trace is provided below:

There is currently some startup issues with connecting to the NuRV server, and it will likely take a few tries before the connection is
established. This is however handled automatically.

References

Information on the NuRV monitor can be found on FBK website.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

....
Running scenario with initial state: lid closed and energy saver on
Setting energy saver mode: enable
Setting G_box to: 0.5763498
State: !anomaly & !energy_saving, verdict: True
State: !anomaly & !energy_saving, verdict: True
....
State: anomaly & !energy_saving, verdict: Unknown
State: anomaly & energy_saving, verdict: True
State: anomaly & energy_saving, verdict: True

1.

2.8.14 Incubator Digital Twin with NuRV monitoring service

- 96/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service

Overview

This example demonstrates how an FMU can be used as a runtime monitoring service (in this example NuRV[1]) and connected with the
Incubator digital twin to verify runtime behavior of the Incubator.

Simulated scenario

This example simulates a scenario where the lid of the Incubator is removed and later put back on. The Incubator is equipped with
anomaly detection capabilities, which can detect anomalous behavior (i.e. the removal of the lid). When an anomaly is detected, the
Incubator triggers an energy saving mode where the heater is turned off.

From a monitoring perspective, we wish to verify that within 3 messages of an anomaly detection, the energy saving mode is turned on. To
verify this behavior, we construct the property:

.

The monitor will output the unknown state as long as the property is satisfied and will transition to the false state once a violation is
detected.

The simulated scenario progresses as follows:

Initialization: The services are initialized and the Kalman filter in the Incubator is given 2 minutes to stabilize. Sometimes, the anomaly
detection algorithm will detect an anomaly at startup even though the lid is still on. It will disappear after approx 15 seconds.

After 2 minutes: The lid is lifted and an anomaly is detected. The energy saver is turned on shortly after.

After another 30 seconds: The energy saver is manually disabled producing a false verdict.

After another 30 seconds: The lid is put back on and the anomaly detection is given time to detect that the lid is back on. The monitor is
then reset producing an Unknown verdict again. The simulation then ends.

Example structure

A diagram depicting the logical software structure of the example can be seen below.

The execute script is responsible for starting the NuRV service and running the Python script that controls the scenario (execute.py).

The execute.py script starts the Incubator services and runs the example scenario. Once the Incubator DT is started, a RabbitMQ client is
created that subscribes to changes in the anomaly and energy_saving states of the DT, as well as the verdicts produced by the NuRV service.
Each time an update is received, the full state and verdict is printed to the console.

•

•

•

•

2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service

- 97/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Digital Twin configuration

Before running the example, please configure the simulation.conf file with your RabbitMQ credentials.

The example uses the following assets:

The safe-operation.smv file contains the default monitored specification as described in the Simulated scenario section. These can be
configured as desired.

Lifecycle phases

The lifecycle phases for this example include:

If required, change the execute permissions of lifecycle scripts you need to execute. This can be done using the following command.

where {script} is the name of the script, e.g. create, execute etc.

Running the example

To run the example, first run the following command in a terminal:

Then, first execute the create script followed by the execute script using the following command:

The execute script will then start outputting system states and the monitor verdict approx every 3 seconds. The output is printed as
follows.

"State: {anomaly state} & {energy_saving state}"

where "anomaly" indicates that an anomaly is detected and "!anomaly" indicates that an anomaly is not currently detected. The same
format is used for the energy_saving state. NuRV verdicts are printed as follows

"Verdict from NuRV: {verdict}".

The monitor verdict can be false or unknown, where the latter indicates that the monitor does not yet have sufficient information to
determine the satisfaction of the property. The monitor will never produce a true verdict as the entire trace must be verified to ensure
satisfaction due to the G operator. Thus the unknown state can be viewed as a tentative true verdict.

Asset Type Names of Assets Visibility Reuse in other Examples

Tools common/tool/NuRV/NuRV Common Yes

Other common/fmi2_headers Common Yes

DT common/digital_twins/incubator Common Yes

Specification safe-operation.smv Private No

Script execute.py Private No

Lifecycle phase Completed tasks

create Downloads the necessary tools and creates a virtual python environment with the necessary dependencies

execute Runs a python script that starts up the necessary services as well as the Incubator simulation. Various status
messages are printed to the console, including the monitored system states and monitor verdict.

1 chmod +x lifecycle/{script}

1 cd /workspace/examples/digital_twins/incubator-NuRV-fmu-monitor-service/

1 lifecycle/{script}

2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service

- 98/203 - Copyright © 2022 - 2024 The INTO-CPS Association

An example output trace is provided below:

References

Information on the NuRV monitor can be found on FBK website.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

....
Using LIFECYCLE_PATH: /workspace/examples/digital_twins/incubator-NuRV-fmu-monitor-service/lifecycle
Using INCUBATOR_PATH: /workspace/examples/digital_twins/incubator-NuRV-fmu-monitor-service/lifecycle/../../../common/digital_twins/incubator
Starting NuRV FMU Monitor Service, see output at /tmp/nurv-fmu-service.log
NuRVService.py PID: 13496
Starting incubator
Connected to rabbitmq server.
Running scenario with initial state: lid closed and energy saver on
Setting energy saver mode: enable
Setting G_box to: 0.5763498
State: !anomaly & !energy_saving
State: !anomaly & !energy_saving
Verdict from NuRV: unknown
State: !anomaly & !energy_saving
State: !anomaly & !energy_saving
Verdict from NuRV: unknown
State: !anomaly & !energy_saving
State: !anomaly & !energy_saving
Verdict from NuRV: unknown
State: !anomaly & !energy_saving
State: !anomaly & !energy_saving
Verdict from NuRV: unknown
State: !anomaly & !energy_saving
State: !anomaly & !energy_saving
Verdict from NuRV: unknown

1.

2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service

- 99/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

3. Admin

3.1 Install

3.1.1 Overview

Install

The goal is to install and administer the DTaaS application for users.

The DTaaS can be installed in different ways. Each version serves a different purpose.

The localhost installation is easy for first time users. Please give it a try.

Otherwise, use the installation setup that fits your needs.

The installation steps is a good place to start the installation process.

Administer

There is a CLI to add and delete users of a running application.

Easy Setup on Localhost

Installation Setup Purpose

localhost Install DTaaS on your computer for a single user; does not need a web server. This setup does not require
domain name.

secure localhost Install DTaaS on your computer for a single user over HTTPS with integrated gitlab installation; does not need
a web server. This setup does not require domain name.

Server Install DTaaS on server for multiple users. Please check the requirements. It is also possible to host the
application over HTTPS with integrated gitlab installation

One vagrant
machine

Install DTaaS on a virtual machine; can be used for single or multiple users.

Two vagrant
machines

Install DTaaS on two virtual machines; can be used for single or multiple users.

The core DTaaS application is installed on the first virtual machine and all the services (RabbitMQ, MQTT,
InfluxDB, Grafana and MongoDB) are installed on second virtual machine.

Independent
Packages

Can be used independently; do not need full installation of DTaaS.

3. Admin

- 100/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.1.2 Installation Steps

Complete DTaaS Application

DTaaS application is available in two flavors. One is localhost which is suitable for single-user, local usage. Another is production server
which is suitable for multi-user setup.

In both cases, the installation is a three step process.

SETUP AUTHORIZATION

DTaaS provides security using OAuth authorization for both react client frontend and backend services.

There is a default frontend authorization application setup for all localhost and backend authorization is not required for localhost
installation.

The production server installation requires both react client frontend and backend services applications.

CONFIGURE COMPONENTS

DTaaS is available as docker compose application. There are four docker compose files

compose.local.yml for localhost installation served over HTTP connection.

compose.local.secure.yml for secure localhost installation served over HTTPS connection.

compose.server.yml for production server installation served over HTTP connection.

compose.server.secure.yml for production server installation served over HTTPS connection.

These four compose files require environment configuration files. The explanation of this configuration file is available directly on the
installation pages.

In addition, react client frontend requires configuration which is explained on this page.

INSTALL

Follow installation instructions given on either localhost or production server pages.

Independent Packages

Each release of DTaaS also comes with release of three reusable packages. These packages have dedicated documentation.

1.

2.

3.

4.

3.1.2 Installation Steps

- 101/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.1.3 Requirements

These optional requirements are not needed for localhost installation. They are only required for installation of the DTaaS on a production
web server.

There are two optional requirements for installing the DTaaS.

OAuth Provider

The DTaaS software is uses OAuth for user authorization. It is possible to use either gitlab.com or your own OAuth service provider.

Domain name

The DTaaS software is a web application and is preferably hosted on a server with a domain name like foo.com. However, it is possible to
install the software on your computer and use access it at localhost.

Tip

3.1.3 Requirements

- 102/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.1.4 Authorization

OAuth for React Client

To enable user authorization on DTaaS React client website, you will use the OAuth authorization protocol, specifically the PKCE
authorization flow. Here are the steps to get started:

1. Choose Your GitLab Server:

You need to set up OAuth authorization on a GitLab server. The commercial gitlab.com is not suitable for multi-user authorization
(DTaaS requires this), so you'll need an on-premise GitLab instance.

You can use GitLab Omnibus Docker for this purpose.

Configure the OAuth application as an instance-wide authorization type.

2. Determine Your Website's Hostname:

Before setting up OAuth on GitLab, decide on the hostname for your website. It's recommended to use a self-hosted GitLab instance,
which you will use in other parts of the DTaaS application.

3. Define Callback and Logout URLs:

For the PKCE authorization flow to function correctly, you need two URLs: a callback URL and a logout URL.

The callback URL informs the OAuth provider of the page where signed-in users should be redirected. It's different from the landing
homepage of the DTaaS application.

The logout URL is where users will be directed after logging out.

4. OAuth Application Creation:

During the creation of the OAuth application on GitLab, you need to specify the scope. Choose openid, profile, read_user,
read_repository, and api scopes.

•

•

•

•

•

•

•

•

3.1.4 Authorization

- 103/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/install/docker.html
https://docs.gitlab.com/ee/integration/oauth_provider.html#create-an-instance-wide-application

5. Application ID:

After successfully creating the OAuth application, GitLab generates an application ID. This is a long string of HEX values that you will
need for your configuration files.

•

3.1.4 Authorization

- 104/203 - Copyright © 2022 - 2024 The INTO-CPS Association

6. Required Information from OAuth Application:

You will need the following information from the OAuth application registered on GitLab:

7. Create User Accounts:

Create user accounts in gitlab for all the usernames chosen during installation. The trial installation script comes with two default
usernames - user1 and user2. For all other installation scenarios, accounts with specific usernames need to be created on gitlab.

•

GitLab Variable Name Variable Name in Client env.js Default Value

OAuth Provider REACT_APP_AUTH_AUTHORITY https://gitlab.foo.com/

Application ID REACT_APP_CLIENT_ID

Callback URL REACT_APP_REDIRECT_URI https://foo.com/Library

Scopes REACT_APP_GITLAB_SCOPES openid, profile, read_user, read_repository, api

3.1.4 Authorization

- 105/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.foo.com/
https://foo.com/Library

OAuth for Traefik Gateway

The traefik gateway is used to serve the DTaaS. All the services provided as part of the application are secured at the traefik gateway. The
security is based on Traefik forward-auth.

An illustration of the docker containers used and the authorization setup is shown here.

The traefik forward-auth can use any OAuth2 provider, but within the DTaaS gitlab is used as authorization provider. You will use the
OAuth the web / server application authorization flow.

Here are the steps to get started:

1. Choose GitLab Server:

You need to set up OAuth authorization on a GitLab server. The commercial gitlab.com is not suitable for multi-user authorization
(DTaaS requires this), so you'll need an on-premise GitLab instance.

You can use GitLab Omnibus Docker for this purpose.

Configure the OAuth application as an instance-wide authorization type. Select option to generate client secret and also selection option
for trusted application.

2. Determine Website Hostname:

Before setting up OAuth on GitLab, decide on the hostname for your website. It's recommended to use a self-hosted GitLab instance, which
you will use in other parts of the DTaaS application.

3. Determine Callback and Logout URLs:

•

•

•

3.1.4 Authorization

- 106/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/thomseddon/traefik-forward-auth
https://docs.gitlab.com/ee/install/docker.html
https://docs.gitlab.com/ee/integration/oauth_provider.html#create-an-instance-wide-application

For the web / server authorization flow to function correctly, you need two URLs: a callback URL and a logout URL.

The callback URL informs the OAuth provider of the page where signed-in users should be redirected. It is the landing homepage of the
DTaaS application. (either http://foo.com/_oauth/ or http://localhost/_oauth/)

The logout URL is the URL for signout of gitlab and clear authorization within traefik-forward auth. (either http://foo.com/_oauth/logout
or http://localhost/_oauth/logout). The logout URL is to help users logout of traefik forward-auth. The logout URL should not be entered
into Gitlab OAuth application setup.

4. Create OAuth Application:

Oauth application setup on GitLab can be located on Edit Profile -> Application https://gitlab.foo.com/-/profile/applications.

During the creation of the OAuth application on GitLab, you need to specify the scope. Choose read_user scope.

5. Copy Application Credentials:

After successfully creating the OAuth application, GitLab generates an application ID and client secret.

Both these values are long string of HEX values that you will need for your configuration files.

•

•

3.1.4 Authorization

- 107/203 - Copyright © 2022 - 2024 The INTO-CPS Association

http://foo.com/_oauth/
http://localhost/_oauth/
http://foo.com/_oauth/logout
http://localhost/_oauth/logout
https://gitlab.foo.com/-/profile/applications

6. Checklist: Required Information from OAuth Application:

You will need the following information from the OAuth application registered on GitLab:

DEVELOPMENT ENVIRONMENT

The development environment and server installation scenarios requires traefik forward-auth.

CONFIGURE AUTHORIZATION RULES FOR TRAEFIK FORWARD-AUTH

The Traefik forward-auth microservices requires configuration rules to manage authorization for different URL paths. The conf.server file
can be used to configure the specific rules. There are broadly three kinds of URLs:

Public Path Without Authorization

To setup a public page, an example is shown below.

Here, 'noauth' is the rule name, and should be changed to suit rule use. Rule names should be unique for each rule. The 'action' property is
set to "allow" to make the resource public. The 'rule' property defines the path/route to reach the resource.

GitLab Variable
Name

Variable Name in .env of docker
compose file

Default Value

OAuth Provider OAUTH_URL https://gitlab.foo.com/

Application ID OAUTH_CLIENT_ID xx

Application Secret OAUTH_CLIENT_SECRET xx

Callback URL (to be directly entered in Gitlab OAuth
registration)

Forward-auth secret OAUTH_SECRET random-secret-string (password for forward-auth, can be
changed to your preferred string)

Scopes read_user

1
2

rule.noauth.action=allow
rule.noauth.rule=Path(`/public`)

3.1.4 Authorization

- 108/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.foo.com/

Common to All Users

To setup a common page that requires Gitlab OAuth, but is available to all users of the Gitlab instance:

The 'action' property is set to "auth", to enable Gitlab OAuth before the resource can be accessed.

Selective Access

Selective Access refers to the scenario of allowing access to a URL path for a few users. To setup selective access to a page:

The 'whitelist' property of a rule defines a comma separated list of email IDs that are allowed to access the resource. While signing in users
can sign in with either their username or email ID as usual, but the email ID corresponding to the account should be included in the
whitelist.

This restricts access of the resource, allowing only users mentioned in the whitelist.

USER MANAGEMENT

DTaaS provides an easy way to add and remove additional users from your DTaaS instance.

All such user management can be done via the DTaaS CLI

LIMITATION

The rules in _conf._ file are not dynamically loaded into the traefik-forward-auth microservice. Any change in the conf file requires restart of
traefik-forward-auth for the changes to take effect. All the existing user sessions get invalidated when the traefik-forward-auth* restarts.

Use a simple command on the terminal.

For a local instance:

For a server instance:

1
2

rule.all.action=auth
rule.all.rule=Path(`/common`)

1
2
3

rule.onlyu1.action=auth
rule.onlyu1.rule=Path(`/user1`)
rule.onlyu1.whitelist = user1@localhost

•

1 docker compose -f compose.server.yml --env-file .env up -d --force-recreate traefik-forward-auth

•

1 docker compose -f compose.server.yml --env-file .env.server up -d --force-recreate traefik-forward-auth

3.1.4 Authorization

- 109/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.1.5 Configuration

Configure Client Website

This page describes various configuration options for react website.

MULTIPLE DTAAS APPLICATIONS

This is not a regular installation scenario and is only recommended for experts. This installation setup requires significant modifications to the
docker compose files.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

if (typeof window !== 'undefined') {
window.env = {
REACT_APP_ENVIRONMENT: "prod | dev | local | test",
REACT_APP_URL: "URL for the gateway",
REACT_APP_URL_BASENAME: "Base URL for the client website"(optional, can be null),
REACT_APP_URL_DTLINK: "Endpoint for the Digital Twin",
REACT_APP_URL_LIBLINK: "Endpoint for the Library Assets",
REACT_APP_WORKBENCHLINK_VNCDESKTOP: "Endpoint for the VNC Desktop link",
REACT_APP_WORKBENCHLINK_VSCODE: "Endpoint for the VS Code link",
REACT_APP_WORKBENCHLINK_JUPYTERLAB: "Endpoint for the Jupyter Lab link",
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK:
"Endpoint for the Jupyter Notebook link",

REACT_APP_WORKBENCHLINK_DT_PREVIEW: "Endpoint for the Digital Twins page preview",
REACT_APP_CLIENT_ID: 'AppID genereated by the gitlab OAuth provider',
REACT_APP_AUTH_AUTHORITY: 'URL of the private gitlab instance',
REACT_APP_REDIRECT_URI: 'URL of the homepage for the logged in users of the website',
REACT_APP_LOGOUT_REDIRECT_URI: 'URL of the homepage for the anonymous users of the website',
REACT_APP_GITLAB_SCOPES: 'OAuth scopes. These should match with the scopes set in gitlab OAuth provider',

};
};

// Example values with no base URL. Trailing and ending slashes are optional.
if (typeof window !== 'undefined') {
window.env = {
REACT_APP_ENVIRONMENT: 'prod',
REACT_APP_URL: 'https://foo.com/',
REACT_APP_URL_BASENAME: '',
REACT_APP_URL_DTLINK: '/lab',
REACT_APP_URL_LIBLINK: '',
REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',
REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: '',
REACT_APP_WORKBENCHLINK_DT_PREVIEW: '/preview/digitaltwins',
REACT_APP_CLIENT_ID: '1be55736756190b3ace4c2c4fb19bde386d1dcc748d20b47ea8cfb5935b8446c',
REACT_APP_AUTH_AUTHORITY: 'https://gitlab.foo.com/',
REACT_APP_REDIRECT_URI: 'https://foo.com/Library',
REACT_APP_LOGOUT_REDIRECT_URI: 'https://foo.com/',
REACT_APP_GITLAB_SCOPES: 'openid profile read_user read_repository api',

};
};

// Example values with "bar" as basename URL.
//Trailing and ending slashes are optional.
if (typeof window !== 'undefined') {
window.env = {
REACT_APP_ENVIRONMENT: "dev",
REACT_APP_URL: 'http://localhost:4000/',
REACT_APP_URL_BASENAME: 'bar',
REACT_APP_URL_DTLINK: '/lab',
REACT_APP_URL_LIBLINK: '',
REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',
REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: '',
REACT_APP_WORKBENCHLINK_DT_PREVIEW: '/preview/digitaltwins',
REACT_APP_CLIENT_ID: '1be55736756190b3ace4c2c4fb19bde386d1dcc748d20b47ea8cfb5935b8446c',
REACT_APP_AUTH_AUTHORITY: 'https://gitlab.foo.com/',
REACT_APP_REDIRECT_URI: 'http://localhost:4000/bar/Library',
REACT_APP_LOGOUT_REDIRECT_URI: 'http://localhost:4000/bar',
REACT_APP_GITLAB_SCOPES: 'openid profile read_user read_repository api',

};
};

Warning

3.1.5 Configuration

- 110/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The DTaaS is a regular web application. It is possible to host multiple DTaaS applications on the same server. The only requirement is to
have a distinct URLs. You can have three DTaaS applications running at the following URLs.

All of these instances can use the same gitlab instance for authorization.

If you are hosting multiple DTaaS instances on the same server, do not install DTaaS with a null basename on the same server. Even though
it works well, the setup is confusing to setup and may lead to maintenance issues.

If you choose to host your DTaaS application with a basename (say bar), then the URLs in env.js change to:

1
2
3

https://foo.com/au
https://foo.com/acme
https://foo.com/bar

DTaaS application
URL

Gitlab Instance
URL

Callback URL Logout URL Application ID

https://foo.com/au https://
foo.gitlab.com

https://foo.com/au/
Library

https://foo.com/
au

autogenerated by
gitlab

https://foo.com/acme https://
foo.gitlab.com

https://foo.com/au/
Library

https://foo.com/
au

autogenerated by
gitlab

https://foo.com/bar https://
foo.gitlab.com

https://foo.com/au/
Library

https://foo.com/
au

autogenerated by
gitlab

1
2
3
4

DTaaS application URL: https://foo.com/bar
Gitlab instance URL: https://gitlab.foo.com
Callback URL: https://foo.com/bar/Library
Logout URL: https://foo.com/bar

3.1.5 Configuration

- 111/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://foo.com/au
https://foo.gitlab.com
https://foo.gitlab.com
https://foo.com/au/Library
https://foo.com/au/Library
https://foo.com/au
https://foo.com/au
https://foo.com/acme
https://foo.gitlab.com
https://foo.gitlab.com
https://foo.com/au/Library
https://foo.com/au/Library
https://foo.com/au
https://foo.com/au
https://foo.com/bar
https://foo.gitlab.com
https://foo.gitlab.com
https://foo.com/au/Library
https://foo.com/au/Library
https://foo.com/au
https://foo.com/au

 Configure Library Microservice

The microservices requires config specified in yaml format. The template configuration file is:

The LOCAL_PATH variable is the absolute filepath to the location of the local directory which will be served to users by the Library
microservice.

The MODE variable sets the mode for which and how the files should be served. If git mode is chosen, the following is required.

Replace the default values the appropriate values for your setup.

The libms looks for libms.yaml file in the working directory from which it is run. If you want to run libms without explicitly specifying the
configuration file, run with -c <path-to-file> .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

port: '4001'
mode: 'local' or 'git'
local-path: '/Users/<Username>/DTaaS/files'
log-level: 'debug'
apollo-path: '/lib' or ''
graphql-playground: 'false' or 'true'

#Only needed if git mode
git-repos:
- <username>:

repo-url: '<git repo url>'
...
- <username>:

repo-url: '<git repo url>'

Variable Description

username Username in which folder the repos will be cloned.

git repo url HTTP URL of the git repository to clone. Optional to add .git to the end of the URL.

3.1.5 Configuration

- 112/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.1.6 Docker

Install DTaaS on localhost

The installation instructions provided in this README are ideal for running the DTaaS on both localhost. This installation is ideal for single
users intending to use DTaaS on their own computers.

DESIGN

An illustration of the docker containers used and the authorization setup is shown here.

REQUIREMENTS

The installation requirements to run this docker version of the DTaaS are:

docker desktop / docker CLI with compose plugin

User account on gitlab.com

The frontend website requires authorization. The default authorization configuration works for gitlab.com. If you desire to use locally hosted
gitlab instance, please see the client docs.

CLONE CODEBASE

•

•

Tip

1
2

git clone https://github.com/INTO-CPS-Association/DTaaS.git
cd DTaaS

3.1.6 Docker

- 113/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The filepaths shown here follow POSIX convention. The installation procedures also work with Windows paths.

The description below refers to filenames. All the file paths mentioned below are relatively to the top-level DTaaS directory.

CONFIGURATION

Docker Compose

The docker compose configuration is in deploy/docker/.env.local ; it is a sample file. It contains environment variables that are used by the
docker compose files. It can be updated to suit your local installation scenario. It contains the following environment variables.

Edit all the fields according to your specific case.

Important points to note:

The path examples given here are for Linux OS. These paths can be Windows OS compatible paths as well.

The client configuration file is located at deploy/config/client/env.local.js . If you are following the guide to use HTTPS on localhost, edit the URLs
in this file by replacing http with https . Beyond this, it is not necessary to modify this file.

Create User Workspace

The existing filesystem for installation is setup for user1 . A new filesystem directory needs to be created for the selected user.

Please execute the following commands from the top-level directory of the DTaaS project.

where username is the selected username registered on https://gitlab.com.

RUN

The commands to start and stop the appliation are:

To restart only a specific container, for example `client``

USE

The application will be accessible at: http://localhost from web browser. Sign in using your https://gitlab.com account.

All the functionality of DTaaS should be available to you through the single page client now.

LIMITATIONS

The library microservice is not included in the localhost installation scenario.

REFERENCES

Image sources: Traefik logo, ml-workspace, reactjs, gitlab

Tip

1.

2.

URL Path Example Value Explanation

DTAAS_DIR '/home/Desktop/DTaaS' Full path to the DTaaS directory. This is an absolute path with no trailing slash.

username1 'user1' Your gitlab username

Tip

1.

2.

1 cp -R files/user1 files/username

1
2

docker compose -f compose.local.yml --env-file .env.local up -d
docker compose -f compose.local.yml --env-file .env.local down

1 docker compose -f compose.local.yml --env-file .env.local up -d --force-recreate client

3.1.6 Docker

- 114/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.com
http://localhost
https://gitlab.com
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://krify.co/about-reactjs/
https://gitlab.com

Install DTaaS on localhost with Gitlab Integration

This installation is ideal for single users intending to use DTaaS on their own computers.

The installation instructions provided in this README are ideal for running the DTaaS on localhost served over HTTPS connection. The
intention is to integrate Gitlab into DTaaS so that both are running on localhost.

If you do not need gitlab running on localhost, please use the simpler localhost setup.

DESIGN

An illustration of the docker containers used and the authorization setup is shown here.

REQUIREMENTS

The installation requirements to run this docker version of the DTaaS are:

docker desktop / docker CLI with compose plugin

mkcert

CLONE CODEBASE

 file pathnames

The filepaths shown here follow POSIX convention. The installation procedures also work with Windows paths.

The description below refers to filenames. All the file paths mentioned below are relatively to the top-level DTaaS directory.

CONFIGURE AND RUN

Create User Workspace

The existing filesystem for installation is setup for user1 . A new filesystem directory needs to be created for the selected user.

•

•

1
2

git clone https://github.com/INTO-CPS-Association/DTaaS.git
cd DTaaS

1.

2.

3.1.6 Docker

- 115/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/FiloSottile/mkcert

Please execute the following commands from the top-level directory of the DTaaS project.

where username is the selected username to be created (in next steps) on Gitlab running at https://localhost/gitlab.

Obtain TLS / HTTPS Certificate

Use mkcert to generate TLS certificates using this guide. The certificates need to be generated for localhost .

The names of the certificates must be fullchain.pem and privkey.pem . The fullchain.pem corresponds to public certificate and the privkey.pem
corresponds to private key.

Add TLS Certificates to Traefik

Copy the two certificate files into:

deploy/docker/certs/localhost/fullchain.pem

deploy/docker/certs/localhost/privkey.pem

Traefik will run with self-issued certificates if the above two certificates are either not found or found invalid.

Configure Docker Compose

The docker compose configuration is in deploy/docker/.env.local ; it is a sample file. It contains environment variables that are used by the
docker compose files. It can be updated to suit your local installation scenario. It contains the following environment variables.

Edit all the fields according to your specific case.

 Important points to note:

The path examples given here are for Linux OS. These paths can be Windows OS compatible paths as well.

The client configuration file is located at deploy/config/client/env.local.js . Edit the URLs in this file by replacing http with https . Beyond this, it
is not necessary to modify this file.

Start DTaaS to Integrate Gitlab

Start the appliation with

Start Gitlab

Use the instructions provided in gitlab integration to bring up Gitlab on localhost and the Gitlab service will be available at https://
localhost/gitlab

Register OAuth2 Application

The frontend website requires OAuth2 application registration on the integrated Gitlab. The details of Oauth2 app for the frontend website
are in client docs.

The default OAuth client application provided in env.local.js works. However, if you intend to run an integrated gitlab instance, then this
application needs to be created on gitlab running at https://localhost/gitlab.

Remember to use https://localhost/Library as the Callback URL (REACT_APP_REDIRECT_URI).

Please see gitlab oauth provider documentation for further help with creating this OAuth application.

1 cp -R files/user1 files/username

•

•

URL Path Example Value Explanation

DTAAS_DIR '/home/Desktop/DTaaS' Full path to the DTaaS directory. This is an absolute path with no trailing slash.

username1 'user1' Your gitlab username

1.

2.

1 docker compose -f compose.local.secure.yml --env-file .env.local up -d

3.1.6 Docker

- 116/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://localhost/gitlab
https://github.com/FiloSottile/mkcert
https://kifarunix.com/create-locally-trusted-ssl-certificates-with-mkcert-on-ubuntu-20-04/
https://localhost/gitlab
https://localhost/gitlab
https://localhost/gitlab
https://localhost/Library
https://docs.gitlab.com/ee/integration/oauth_provider.html

Update Client Website Configuration

Replace the contents of deploy/config/client/env.local.js with the following.

And then update OAuth2 client application ID (REACT_APP_CLIENT_ID) with that of the newly registered OAuth2 application.

Restart DTaaS Client Website

To update the client website configuration, run

USE

The application will be accessible at: https://localhost from web browser. Sign in using your https://localhost/gitlab account.

All the functionality of DTaaS should be available to you through the single page client now.

LIMITATIONS

The library microservice is not included in the localhost installation scenario.

DOCKER HELP

The commands to start and stop the appliation are:

To restart only a specific container, for example client

REFERENCES

Image sources: Traefik logo, ml-workspace, reactjs, gitlab

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

if (typeof window !== 'undefined') {
window.env = {
REACT_APP_ENVIRONMENT: 'local',
REACT_APP_URL: 'https://localhost/',
REACT_APP_URL_BASENAME: '',
REACT_APP_URL_DTLINK: '/lab',
REACT_APP_URL_LIBLINK: '',
REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',
REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: '',

REACT_APP_CLIENT_ID: 'xxxxxx',
REACT_APP_AUTH_AUTHORITY: 'https://localhost/gitlab/',
REACT_APP_REDIRECT_URI: 'https://localhost/Library',
REACT_APP_LOGOUT_REDIRECT_URI: 'https://localhost/',
REACT_APP_GITLAB_SCOPES: 'openid profile read_user read_repository api',

};
};

1 docker compose -f compose.local.secure.yml --env-file .env.local up -d --force-recreate client

1
2

docker compose -f compose.local.secure.yml --env-file .env.local up -d
docker compose -f compose.local.secure.yml --env-file .env.local down

1 docker compose -f compose.local.secure.yml --env-file .env.local up -d --force-recreate client

3.1.6 Docker

- 117/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://localhost
https://localhost/gitlab
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://krify.co/about-reactjs/
https://gitlab.com

Install DTaaS on a Production Server

The installation instructions provided in this README are ideal for hosting the DTaaS as web application for multiple users.

DESIGN

An illustration of the docker containers used and the authorization setup is shown here.

In the new application configuration, there are two OAuth2 applications.

REQUIREMENTS

The installation requirements to run this docker version of the DTaaS are:

Docker with Compose Plugin

It is mandatory to have Docker installed on your computer. We highly recommend using Docker Desktop.

Domain name

The DTaaS software is a web application and is preferably hosted on a server with a domain name like foo.com. It is also possible to use an
IP address in place of domain name.

TLS / HTTPS Certificate (Optional)

It is possible to add HTTPS option to the DTaaS software installation. Creation of the required TLS certificates is possible through certbot.

OAuth Provider

Gitlab Instance - The DTaaS uses Gitlab OAuth2.0 authorization for user authorization. You can either have an on-premise instance of
gitlab, or use gitlab.com itself.

3.1.6 Docker

- 118/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://www.docker.com/
https://www.docker.com/products/docker-desktop/
https://certbot.eff.org/
https://about.gitlab.com/install/
https://gitlab.com

User Accounts

Create user accounts in a linked gitlab instance for all the users.

The default docker compose file contains two - user1 and user2. These names need to be changed to suitable usernames.

OAuth2 Application Registration

The multi-user installation setup requires dedicated authorization setup for both frontend website and backend services. Both these
authorization requirements are satisfied using OAuth2 protocol.

The frontend website is a React single page application (SPA).

The details of Oauth2 app for the frontend website are in client docs.

The Oauth2 authorization for backend services is managed by Traefik forward-auth. The details of this authorization setup are in server
docs.

It is possible to use https://gitlab.com or a local installation of Gitlab can be used for this purpose. Based on your selection of gitlab
instance, it is necessary to register these two OAuth2 applications and link them to your intended DTaaS installation.

Please see gitlab oauth provider documentation for further help with creating these two OAuth applications.

CLONE CODEBASE

The filepaths shown here follow Linux OS. The installation procedures also work with Windows OS.

The description below refers to filenames. All the file paths mentioned below are relatively to the top-level DTaaS directory.

CONFIGURATION

Three following configuration files need to be updated.

Docker Compose

The docker compose configuration is in deploy/docker/.env.server . it is a sample file. It contains environment variables that are used by the
docker compose files. It can be updated to suit your local installation scenario. It contains the following environment variables.

Edit all the fields according to your specific case.

•

•

•

1
2

git clone https://github.com/INTO-CPS-Association/DTaaS.git
cd DTaaS

Tip

1.

2.

URL Path Example Value Explanation

DTAAS_DIR '/Users/username/
DTaaS'

Full path to the DTaaS directory. This is an absolute path with no trailing
slash.

SERVER_DNS foo.com The server DNS, if you are deploying with a dedicated server. Remember not
use http(s) at the beginning of the DNS string

OAUTH_URL gitlab.foo.com The URL of your Gitlab instance. It can be gitlab.com if you are planning to
use it for authorization.

OAUTH_CLIENT_ID 'xx' The ID of your server OAuth application

OAUTH_CLIENT_SECRET 'xx' The Secret of your server OAuth application

OAUTH_SECRET 'random-secret-
string'

Any private random string. This is a password you choose for local
installation.

username1 'user1' The gitlab instance username of a user of DTaaS

username2 'user2' The gitlab instance username of a user of DTaaS

3.1.6 Docker

- 119/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/thomseddon/traefik-forward-auth
https://gitlab.com
https://docs.gitlab.com/ee/integration/oauth_provider.html

Important points to note:

The path examples given here are for Linux OS. These paths can be Windows OS compatible paths as well.

The client configuration file is located at deploy/config/client/env.js .

The Server DNS can also be an IP address. However, for proper working it is neccessary to use the same convention (IP/DNS) in the client
configuration file as well.

Website Client

The frontend React website requires configuration which is specified in the client configuration file (deploy/config/client/env.js).

Further explanation on the client configuration is available in client config.

There is a default OAuth application registered on https://gitlab.com for client. The corresponding OAuth application details are:

This can be used for test purposes. Please use your own OAuth application for secure production deployments.

Create User Workspace

The existing filesystem for installation is setup for files/user1 . A new filesystem directory needs to be created for the selected user.

Please execute the following commands from the top-level directory of the DTaaS project.

where username is one of the selected usernames. This command needs to be repeated for all the selected users.

Configure Authorization Rules for Backend Authorization

The Traefik forward-auth microservices requires configuration rules to manage authorization for different URL paths. The deploy/docker/
conf.server file can be used to configure the authorization for user workspaces.

Please change the usernames and email addresses to the matching user accounts on the OAuth provider (either https://gitlab.foo.com or
https://gitlab.com).

Caveat

The usernames in the deploy/docker/.env.server file need to match those in the deploy/docker/conf.server file.

Traefik routes are controlled by the deploy/docker/.env.server file. Authorization on these routes is controlled by the deploy/docker/conf.server
file. If a route is not specified in deploy/docker/conf.server file but an authorisation is requested by traefik for this unknown route, the default
behavior of traefik forward-auth kicks in. This default behavior is to enable endpoint being available to any signed in user.

If there are extra routes in deploy/docker/conf.server file but these are not in deploy/docker/.env.server file, such routes are not served by
traefik; it will give 404 server response.

Tip

1.

2.

3.

Tip

1
2

REACT_APP_CLIENT_ID: '1be55736756190b3ace4c2c4fb19bde386d1dcc748d20b47ea8cfb5935b8446c',
REACT_APP_AUTH_AUTHORITY: 'https://gitlab.com/',

1 cp -R files/user1 files/username

1
2
3
4
5
6
7

rule.onlyu1.action=auth
rule.onlyu1.rule=Path(`/user1`)
rule.onlyu1.whitelist = user1@localhost

rule.onlyu1.action=auth
rule.onlyu1.rule=Path(`/user2`)
rule.onlyu1.whitelist = user2@localhost

3.1.6 Docker

- 120/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.com
https://gitlab.foo.com
https://gitlab.com

ACCESS RIGHTS OVER FILES

The default setting in docker compose file exposes all user files at http://foo.com/lib/files. All files of all the users are readable-writable by all
logged in users. The compose.server.yml / compose.server.secure.yml file needs to be updated to expose another directory like common assets
directory.

If you wish to reduce this scope to only common assets, please change,

The change in the last line. The ${DTAAS_DIR}/files got replaced by ${DTAAS_DIR}/files/common . With this change, only common files are
readable-writable by all logged in users.

Add TLS Certificates (Optional)

The application can be served on HTTPS connection for which TLS certificates are needed. The certificates need to be issued for foo.com or
*.foo.com . The names of the certificates must be fullchain.pem and privkey.pem . Copy these two certificate files into:

certs/foo.com/fullchain.pem

certs/foo.com/privkey.pem

Traefik will run with self-issued certificates if the above two certificates are either not found or found invalid.

Remember to update dynamic/tls.yml with correct path matching your DNS name. For example, if your DNS name is www.foo.com , then copy
the TLS certificates of www.foo.com to certs/ directory and update dynamic/tls.yml as follows.

RUN

Over HTTP

This docker compose file serves application over HTTP.

The commands to start and stop the appliation are:

To restart only a specific container, for example `client``

Over HTTPS

This docker compose file serves application over HTTP.

The commands to start and stop the appliation are:

Warning

1
2
3
4
5
6

libms:
image: intocps/libms:latest
restart: unless-stopped
volumes:
- ${DTAAS_DIR}/deploy/config/lib.env:/dtaas/libms/.env
- ${DTAAS_DIR}/files/common:/dtaas/libms/files

•

•

1
2
3
4
5
6

tls:
 certificates:
 - certFile: /etc/traefik-certs/www.foo.com/fullchain.pem
 keyFile: /etc/traefik-certs/www.foo.com/privkey.pem
 stores:
 - default

1
2

docker compose -f compose.server.yml --env-file .env.server up -d
docker compose -f compose.server.yml --env-file .env.server down

1 docker compose -f compose.server.yml --env-file .env.server up -d --force-recreate client

1
2

docker compose -f compose.server.secure.yml --env-file .env.server up -d
docker compose -f compose.server.secure.yml --env-file .env.server down

3.1.6 Docker

- 121/203 - Copyright © 2022 - 2024 The INTO-CPS Association

http://foo.com/lib/files

To restart only a specific container, for example `client``

USE

The application will be accessible at: from web browser. Sign in using your account linked to either gitlab.com or your local gitlab instance.

All the functionality of DTaaS should be available to your users through the single page client now.

You may have to click Sign in to Gitlab on the Client page and authorize access to the shown application.

Adding a new user

Please see the add new user to add new users.

REFERENCES

Image sources: Traefik logo, ml-workspace, reactjs, gitlab

1 docker compose -f compose.server.secure.yml --env-file .env.server up -d --force-recreate client

3.1.6 Docker

- 122/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://krify.co/about-reactjs/
https://gitlab.com

3.1.7 Vagrant

DTaaS Vagrant Box

This README provides instructions on creating a custom Operating System virtual disk for running the DTaaS software. The virtual disk is
managed by vagrant. The purpose is two fold:

Provide cross-platform installation of the DTaaS application. Any operating system supporting use of vagrant software utility can
support installation of the DTaaS software.

Create a ready to use development environment for code contributors.

There are two scripts in this directory:

If you are installing the DTaaS for developers, the default installation caters to your needs. You can skip the next step and continue with
the creation of vagrant box.

If you are a developer and would like additional software installed, you need to modify Vagrantfile . The existing Vagrantfile has two lines:

Uncomment the second line to have more software components installed. If you are not a developer, no changes are required to the
Vagrantfile .

This vagrant box installed for users will have the following items:

docker v24.0

nodejs v20.10

yarn v1.22

npm v10.2

containers - ml-workspace-minimal v0.13, traefik v2.10, gitlab-ce v16.4, influxdb v2.7, grafana v10.1, rabbitmq v3-management, eclipse-
mosquitto (mqtt) v2, mongodb v7.0

This vagrant box installed for developers will have the following items additional items:

docker-compose v2.20

microk8s v1.27

jupyterlab

mkdocs

container - telegraf v1.28

At the end of installation, the software stack created in vagrant box can be visualised as shown in the following figure.

•

•

Script name Purpose Default

user.sh user installation

developer.sh developer installation

1
2

config.vm.provision "shell", path: "user.sh"
#config.vm.provision "shell", path: "developer.sh"

1.

2.

3.

4.

5.

•

•

•

•

•

3.1.7 Vagrant

- 123/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.1.7 Vagrant

- 124/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The upcoming instructions will help with the creation of base vagrant box.

REFERENCES

Image sources: Ubuntu logo

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#create a key pair
ssh-keygen -b 4096 -t rsa -f vagrant -q -N ""

vagrant up

let the provisioning be complete
replace the vagrant ssh key-pair with personal one
vagrant ssh

install the oh-my-zsh
sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"
install plugins: history, autosuggestions,
git clone https://github.com/zsh-users/zsh-autosuggestions ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-autosuggestions

inside ~/.zshrc, modify the following line
plugins=(git zsh-autosuggestions history cp tmux)

to replace the default vagrant ssh key-pair with
the generated private key into authorized keys
cp /vagrant/vagrant.pub /home/vagrant/.ssh/authorized_keys

exit vagrant guest machine and then
copy own private key to vagrant private key location
cp vagrant .vagrant/machines/default/virtualbox/private_key

check
vagrant ssh #should work

exit vagrant guest machine and then
vagrant halt

vagrant package --base dtaas \
--info "info.json" --output dtaas.vagrant

Add box to the vagrant cache in ~/.vagrant.d/boxes directory
vagrant box add --name dtaas ./dtaas.vagrant

You can use this box in other vagrant boxes using
#config.vm.box = "dtaas"

3.1.7 Vagrant

- 125/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://logodix.com/linux-ubuntu

DTaaS on Single Vagrant Machine

These are installation instructions for running DTaaS software inside one vagrant Virtual Machine. The setup requires a machine which
can spare 16GB RAM, 8 vCPUs and 50GB Hard Disk space to the vagrant box.

CREATE BASE VAGRANT BOX

Create dtaas Vagrant box. You would have created an SSH key pair - vagrant and vagrant.pub. The vagrant is the private SSH key and is
needed for the next steps. Copy vagrant SSH private key into the current directory (deploy/vagrant/single-machine). This shall be useful for
logging into the vagrant machines created for two-machine deployment.

TARGET INSTALLATION SETUP

The goal is to use the dtaas Vagrant box to install the DTaaS software on one single vagrant machine. A graphical illustration of a
successful installation can be seen here.

3.1.7 Vagrant

- 126/203 - Copyright © 2022 - 2024 The INTO-CPS Association

There are many unused software packages/docker containers within the dtaas base box. The used packages/docker containers are
highlighed in blue color.

The illustration shows hosting of gitlab on the same vagrant machine with http(s)://gitlab.foo.com The gitlab setup is outside the scope this
installation guide. Please refer to gitlab docker install for gitlab installation.

CONFIGURE SERVER SETTINGS

A dummy foo.com URL has been used for illustration. Please change this to your unique website URL.

Please follow the next steps to make this installation work in your local environment.

Update the Vagrantfile. Fields to update are:

Hostname (node.vm.hostname = "foo.com")

MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC address.
Otherwise, you can leave this field unchanged.

Other adjustments are optional.

INSTALLATION STEPS

Execute the following commands from terminal

Set a cronjob inside the vagrant virtual machine to remote the conflicting default route. Download the route script and run the following
command.

Please follow the instructions of regular server installation setup to complete the installation.

REFERENCES

Image sources: Ubuntu logo, Traefik logo, ml-workspace, nodejs, reactjs, nestjs

Tip

1.

2.

3.

1
2

vagrant up
vagrant ssh

1 sudo bash route.sh

3.1.7 Vagrant

- 127/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/install/docker.html
https://logodix.com/linux-ubuntu
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://www.metachris.com/2017/01/how-to-install-nodejs-7-on-ubuntu-and-centos/
https://krify.co/about-reactjs/
https://camunda.com/blog/2019/10/nestjs-tx-email/

DTaaS on Two Vagrant Machines

These are installation instructions for running DTaaS application in two vagrant virtual machines (VMs). In this setup, all the user
workspaces shall be run on server1 while all the platform services will be run on server2.

The setup requires two server VMs with the following hardware configuration:

server1: 16GB RAM, 8 x64 vCPUs and 50GB Hard Disk space

server2: 6GB RAM, 3 x64 vCPUs and 50GB Hard Disk space

Under the default configuration, two user workspaces are provisioned on server1. The default installation setup also installs InfluxDB,
Grafana, RabbitMQ and MQTT services on server2. If you would like to install more services, you can create shell scripts to install the same
on server2.

CREATE BASE VAGRANT BOX

Create dtaas Vagrant box. You would have created an SSH key pair - vagrant and vagrant.pub. The vagrant is the private SSH key and is
needed for the next steps. Copy vagrant SSH private key into the current directory (deploy/vagrant/two-machine). This shall be useful for
logging into the vagrant machines created for two-machine deployment.

TARGET INSTALLATION SETUP

The goal is to use this dtaas vagrant box to install the DTaaS software on server1 and the default platform services on server2. Both the
servers are vagrant machines.

There are many unused software packages/docker containers within the dtaas base box. The used packages/docker containers are
highlighed in blue and red color.

A graphical illustration of a successful installation can be seen here.

3.1.7 Vagrant

- 128/203 - Copyright © 2022 - 2024 The INTO-CPS Association

In this case, both the vagrant boxes are spawed on one server using two vagrant configuration files, namely boxes.json and Vagrantfile.

The illustration shows hosting of gitlab on the same vagrant machine with http(s)://gitlab.foo.com The gitlab setup is outside the scope this
installation guide. Please refer to gitlab docker install for gitlab installation.

CONFIGURE SERVER SETTINGS

 A dummy foo.com and services.foo.com URLs has been used for illustration. Please change these to your unique website URLs.

The first step is to define the network identity of the two VMs. For that, you need server name, hostname and MAC address. The hostname is
the network URL at which the server can be accessed on the web. Please follow these steps to make this work in your local environment.

Update the boxes.json. There are entries one for each server. The fields to update are:

name - name of server1 ("name" = "dtaas-two")

hostname - hostname of server1 ("name" = "foo.com")

MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC address.
Otherwise, you can leave this field unchanged.

name - name of server2 ("name" = "services")

hostname - hostname of server2 ("name" = "services.foo.com")

MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC address.
Otherwise, you can leave this field unchanged.

Other adjustments are optional.

INSTALLATION STEPS

The installation instructions are given separately for each vagrant machine.

Tip

1.

2.

3.

4.

5.

6.

7.

3.1.7 Vagrant

- 129/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/install/docker.html

Launch DTaaS Platform Default Services

Follow the installation guide for services to install the DTaaS platform services.

After the services are up and running, you can see the following services active within server2 (services.foo.com).

Install DTaaS Application

Execute the following commands from terminal

Set a cronjob inside the vagrant virtual machine to remote the conflicting default route. Download the route script and run the following
command.

Please follow the instructions of regular server installation setup to complete the installation.

REFERENCES

Image sources: Ubuntu logo, Traefik logo, ml-workspace, nodejs, reactjs, nestjs

service external url

InfluxDB database services.foo.com

Grafana visualization service services.foo.com:3000

MQTT Broker services.foo.com:1883

RabbitMQ Broker services.foo.com:5672

RabbitMQ Broker management website services.foo.com:15672

MongoDB database services.foo.com:27017

1
2

vagrant up
vagrant ssh

1 sudo bash route.sh

3.1.7 Vagrant

- 130/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://logodix.com/linux-ubuntu
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://www.metachris.com/2017/01/how-to-install-nodejs-7-on-ubuntu-and-centos/
https://krify.co/about-reactjs/
https://camunda.com/blog/2019/10/nestjs-tx-email/

3.1.8 Third-party Services

The DTaaS software platform uses third-party software services to provide enhanced value to users.

InfluxDB, Grafana, RabbitMQ and Mosquitto are default services integrated into the DTaaS software platform.

Pre-requisites

All these services run on raw TCP/UDP ports. Thus a direct network access to these services is required for both the DTs running inside the
DTaaS software and the PT located outside the DTaaS software.

There are two possible choices here:

Configure Traefik gateway to permit TCP/UDP traffic

Bypass Traefik altogether

Unless you are an informed user of Traefik, we recommend bypassing traefik and provide raw TCP/UDP access to these services from the
Internet.

The InfluxDB service requires a dedicated hostname. The management interface of RabbitMQ service requires a dedicated hostname as well.

Grafana service can run well behind Traefik gateway. The default Traefik configuration makes permits access to Grafana at URL: http(s):
foo.com/vis.

Configure and Install

If you have not cloned the DTaaS git repository, cloning would be the first step. In case you already have the codebase, you can skip the
cloning step. To clone, do:

The next step in installation is to specify the config of the services. There are two configuration files. The services.yml contains most of
configuration settings. The mqtt-default.conf file contains the MQTT listening port. Update these two config files before proceeding with
the installation of the services.

Now continue with the installation of services.

Use

After the installation is complete, you can see the following services active at the following ports / URLs.

•

•

1
2

git clone https://github.com/into-cps-association/DTaaS.git
cd DTaaS/deploy/services

1
2

yarn install
node services.js

service external url

Influx services.foo.com

Grafana services.foo.com:3000

RabbitMQ Broker services.foo.com:5672

RabbitMQ Broker Management Website services.foo.com:15672

MQTT Broker services.foo.com:1883

MongoDB database services.foo.com:27017

3.1.8 Third-party Services

- 131/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The firewall and network access settings of corporate / cloud network need to be configured to allow external access to the services.
Otherwise the users of DTaaS will not be able to utilize these services from their user workspaces.

3.1.8 Third-party Services

- 132/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.2 Integrated Gitlab

3.2.1 Install Gitlab

This guide helps with installation of a dedicated Gitlab service. This Gitlab installation can be used as OAuth2 authorization provider to the
DTaaS software. In addition, it is also possible to use the integrated Gitlab for enabling the digital twin DevOps experimental features of
the DTaaS.

There are two possible ways you can install Gitlab:

At dedicated domain name (ex: gitlab.foo.com)

At a URL path on existing WWW server (ex: foo.com/gitlab)

This guide illustrates the installation of Gitlab at: foo.com/gitlab. But the instructions can be adapted to install Gitlab at a dedicated domain
name.

Configure and Install

If you have not cloned the DTaaS git repository, cloning would be the first step. In case you already have the codebase, you can skip the
cloning step. To clone, do:

This directory contains files needed to set up the docker container containing the local GitLab instance.

./data , ./config , ./logs are the directories that will contain data for the GitLab instance

compose.gitlab.yml and .env are the Docker compose and environment files to manage the containerized instance of gitlab

If the DTaaS application and gitlab are to be hosted at https://foo.com, then the client config file (deploy/config/client/env.js) needs to use the
https://foo.com/gitlab as REACT_APP_AUTH_AUTHORITY . In addition, this hosting at https://foo.com also requires changes to config file (.env.server).

If the DTaaS application and gitlab are to be hosted at https://localhost, then the client config file (deploy/config/client/env.local.js) needs to
use the https://localhost/gitlab as REACT_APP_AUTH_AUTHORITY . If the application and the integrated gitlab are to be hosted at https://localhost/
gitlab , then .env.server need not be modified.

Edit the .env file available in this directory to contain the following variables:

NOTE: The DTaaS client uses the react-oidc-context node package, which incorrectly causes redirects to use the HTTPS URL scheme. This is a
known issue with the package, and forces us to use HTTPS for the DTaaS server. If you are hosting the DTaaS locally, your GitLab instance
should be available at https://localhost/gitlab. If you are hosting the DTaaS at https://foo.com, then you Gitlab instance should be available
at https://foo.com/gitlab.

Run

NOTE: The GitLab instance operates with the dtaas-frontend network, which requires the DTaaS server to be running before you start it.
You may refer to secure installation scenarios for the same.

•

•

1
2

git clone https://github.com/into-cps-association/DTaaS.git
cd DTaaS/deploy/services/gitlab

1.

2.

Variable Example Value Explanation

GITLAB_HOME '/home/Desktop/DTaaS/deploy/
services/gitlab'

Full path to the DTaaS gitlab directory. This is an absolute path with no
trailing slash.

SERVER_DNS either foo.com or localhost The server DNS, if you are deploying with a dedicated server. Remember
not use http(s) at the beginning of the DNS string.

3.2 Integrated Gitlab

- 133/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.com
https://foo.com
https://foo.com/gitlab
https://foo.com
https://localhost
https://localhost/gitlab
https://github.com/authts/react-oidc-context/issues/1288
https://localhost/gitlab
https://foo.com
https://foo.com/gitlab

The commands to start and stop the instance are:

Each time you start the container, it may take a few minutes. You can monitor the progress with watch docker ps and check if the gitlab
container is healthy .

POST-INSTALL CONFIGURATION

Gitlab also requires post-installation configuration.

This configuration needs to be done from within the running container.

The configuration file to change is /etc/gitlab/gitlab.rb. The variables to change are:

The external_url mentioned about indicates hosting of gitlab at https://foo.com/gitlab. If the gitlab needs to be available at https://localhost/
gitlab, then the external_url should be https://localhost/gitlab.

Save the changes and reconfigure gitlab by running:

The administrator username for GitLab is: root . The password for this user account will be available in: /etc/gitlab/initial_root_password.
Be sure to save this password somewhere, as this file will be deleted after 24 hours from the first time you start the local instance.

After running the container, your local GitLab instance will be available at external_url specified in gitlab.rb, i.e., either at https://foo.com/
gitlab or at https://localhost/gitlab.

CREATE USERS

The newly installed gitlab only contains root user. More users need to be created for use with DTaaS. Please see the Gitlab docs for further
help.

Pending Tasks

This README helps with installation of Gitlab along side DTaaS application. But the OAuth2 integration between Gitlab and DTaaS will still
be pending. Follow the integration guide and the runner setup guide to setup the Gitlab integration.

1
2
3

(cd deploy/services/gitlab)
docker compose -f compose.gitlab.yml up -d
docker compose -f compose.gitlab.yml down

Information

1 docker exec -it gitlab bash

1
2
3
4
5
6
7

external_url 'http(s)://foo.com/gitlab'
nginx['listen_port'] = 80
nginx['enable'] = true

nginx['listen_https'] = false
nginx['redirect_http_to_https'] = false
letsencrypt['enable'] = false

1
2
3

inside the gitlab docker container
gitlab-ctl reconfigure
exit

3.2.1 Install Gitlab

- 134/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://foo.com/gitlab
https://localhost/gitlab
https://localhost/gitlab
https://localhost/gitlab
https://foo.com/gitlab
https://foo.com/gitlab
https://localhost/gitlab
https://docs.gitlab.com/ee/user/profile/account/create_accounts.html

3.2.2 GitLab Integration Guide

This guide helps with integration of a local GitLab instance with a DTaaS server installation, and integrating the OAuth Authorization
feature with the DTaaS installation.

After following this guide, the GitLab instance will be integrated as OAuth provider for both DTaaS client application and Traefik Forward
Auth backend authorization.

The DTaaS client uses the react-oidc-context node package, which incorrectly causes authorization redirects to use the HTTPS URL scheme. This
is a known issue with the package, and forces us to use HTTPS for the DTaaS server. This means your server should be set up to use either
https://localhost or https://foo.com. This guide will henceforth use foo.com to represent either localhost or a custom domain.

Integration Steps

1. SET UP THE DTAAS SERVER OVER HTTPS

Follow the existing guides to set up the DTaaS web application over HTTPS connection on either localhost (https://localhost) or a custom
domain (https://foo.com).

You may ignore steps related to configuring OAuth application tokens at https://gitlab.com. We will be using the initial installation to host the
local GitLab instance, on which we will later create the OAuth application tokens.

2. SET UP THE GITLAB INSTANCE

Follow the guide to set up a GitLab instance.

After this step, and once you run gitlab-ctl reconfigure , you will have a functioning GitLab instance (at either https://localhost/gitlab or
https://foo.com/gitlab). Login credentials of the root user.

3. CREATE OAUTH TOKENS IN GITLAB

Follow these guides to create OAuth Application Tokens for - backend and client. Please note that backend is not required for https://
localhost installation.

After this step you will have credentials for the application tokens titled "DTaaS Server Authorization" and "DTaaS Client Authorization",
which we will use in the next step.

4. USE VALID OAUTH APPLICATION TOKENS

We can now use the OAuth tokens generated on the GitLab instance to enable authorization.

If the DTaaS application is hosted at https://localhost, then configure the following files:

DTaaS Client Authorization token in deploy/config/client/env.local.js.

deploy/docker/.env.local Add localpath and username.

If the DTaaS application is hosted at https://foo.com, then configure the following files:

DTaaS Client Authorization token in deploy/config/client/env.js.

deploy/docker/.env.server - Add localpath and username, OAuth client ID and client secret from the DTaaS Server Authorization token

Note

Note

1.

2.

1.

2.

3.2.2 GitLab Integration Guide

- 135/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/authts/react-oidc-context/issues/1288
https://localhost
https://foo.com
https://localhost
https://foo.com
https://gitlab.com
https://localhost/gitlab
https://foo.com/gitlab
https://localhost
https://localhost
https://localhost
https://foo.com

Restart Services

LOCALHOST INSTALLATION

The updated OAuth application configuration needs to be loaded into the client website service.

PRODUCTION SERVER INSTALLATION

The updated OAuth application configuration needs to be loaded into the client website and the forward-auth services.

The production server can be installed with either http or https option. If it is installed with http option, run the following commands.

If the production server is installed with https option, run the following commands.

Post Setup Usage

If you have set up everything correctly:

You will have a functioning path-prefixed GitLab instance available at https://foo.com/gitlab that you may use in a similar manner to https://
gitlab.com.

Data, configuration settings and logs pertaining to the GitLab installation will be available on the DTaaS server within the directory: deploy/
services/gitlab.

Traefik Forward Auth will use the path-prefixed GitLab instance for authorization on the multi-user installation scenario i.e. foo.com (but not
on localhost).

1
2

cd deploy/docker
docker compose -f compose.local.yml --env-file .env.local up -d --force-recreate client

1
2
3

cd deploy/docker
docker compose -f compose.server.yml --env-file .env.server up -d --force-recreate client
docker compose -f compose.server.yml --env-file .env.server up -d --force-recreate traefik-forward-auth

1
2
3

cd deploy/docker
docker compose -f compose.server.secure.yml --env-file .env.server up -d --force-recreate client
docker compose -f compose.server.secure.yml --env-file .env.server up -d --force-recreate traefik-forward-auth

1.

2.

3.

3.2.2 GitLab Integration Guide

- 136/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.com
https://gitlab.com

3.2.3 GitLab Runner Integration

This document outlines the steps needed to create a Docker container named gitlab-runner which will contain a single runner that will be
responsible for the execution of Digital Twins. There are two installation scenarios:

Localhost Installation - You are using the integrated runner locally with a GitLab instance hosted at https://localhost/gitlab .

Server Installation - You are using the integrated runner with a GitLab instance hosted on a production server. This server may be a remote
server and not necessarily your own, and may have TLS enabled with a self-signed certificate.

Following the steps below sets up the integrated runner which can be used to execute digital twins from the Digital Twins Preview Page.

Prerequisites

A GitLab Runner picks up CI/CD jobs by communicating with a GitLab instance. For an explanation of how to set up a GitLab instance that
integrates with a DTaaS application, refer to our GitLab instance document and our GitLab integration guide.

The rest of this document assumes you have a running DTaaS application with a GitLab instance running.

Runner Scopes

A GitLab Runner can be configured for three different scopes:

We suggest creating instance runners as they are the most straightforward, but any type will work. More about these three types can be
found on the official GitLab documentation page.

Obtaining A Registration Token

First, we will obtain the token necessary to register the runner for the GitLab instance. Open your GitLab instance (remote or local) and
depending on your choice of runner scope, follow the steps given below:

For any scope you have chosen, you will be directed to a page to create a runner:

Under Platform, select the Linux operating system.

Under Tags, add a linux tag.

Select Create runner.

1.

2.

Runner Scope Description

Instance Runner Available to all groups and projects in a GitLab instance.

Group Runner Available to all projects and subgroups in a group.

Project Runner Associated with one specific project.

Runner Scope Steps

Instance Runner 1. On the Admin dashboard, navigate to CI/CD > Runners.
2. Select New instance runner.

Group Runner 1. On the DTaaS group page, navigate to Settings > CI/CD > Runners.
2. Ensure the Enable shared runners for this group option is enabled.
3. On the DTaaS group page, navigate to Build > Runners.
4. Select New group runner.

Project Runner 1. On the DTaaS group page, select the project named after your GitLab username.
2. Navigate to Settings > CI/CD > Runners.
3. Select New project runner.

1.

2.

3.

3.2.3 GitLab Runner Integration

- 137/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/ci/runners/runners_scope.html

You should then see the following screen:

Be sure to save the generated runner authentication token.

Configuring the Runner

Depending on your installation scenario, the runner setup reads certain configurations settings:

Localhost Installation - uses deploy/docker/.env.local

Server Installation - uses deploy/docker/.env.server

These files are integral to running the DTaaS application, so it will be assumed that you have already configured these.

We need to register the runner with the GitLab instance so that they may communicate with each other. deploy/services/runner/runner-
config.toml has the following template:

Set the url variable to the URL of your GitLab instance.

Set the token variable to the runner registration token you obtained earlier.

If you are following the server installation scenario, remove the line network_mode = "host" .

A list of advanced configuration options is provided on the GitLab documentation page.

1.

2.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

[[runners]]
name = "dtaas-runner-1"
url = "https://foo.com/gitlab/" # Edit this
token = "xxx" # Edit this
executor = "docker"
[runners.docker]
tls_verify = false
image = "ruby:2.7"
privileged = false
disable_entrypoint_overwrite = false
oom_kill_disable = false
volumes = ["/cache"]
network_mode = "host" # Disable this in secure contexts

1.

2.

3.

3.2.3 GitLab Runner Integration

- 138/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/runner/configuration/advanced-configuration.html

Start the GitLab Runner

You may use the following commands to start and stop the gitlab-runner container respectively, depending on your installation scenario:

Go to the DTaaS home directory (DTaaS_DIR) and execute one of the following commands.

Localhost Installation

Server Installation

Once the container starts, the runner within it will run automatically. You can tell if the runner is up and running by navigating to the
page where you created the runner. For example, an Instance Runner would look like this:

You will now have a GitLab runner ready to accept jobs for the GitLab instance.

Pipeline Trigger Token

The Digital Twins Preview Page uses the GitLab API which requires a Pipeline Trigger Token. Go to your project in the DTaaS group and
navigate to Settings > CI/CD > Pipeline trigger tokens. Add a new token with any description of your choice.

1.

2.

1
2

docker compose -f deploy/services/runner/compose.runner.local.yml --env-file deploy/docker/.env.local up -d
docker compose -f deploy/services/runner/compose.runner.local.yml --env-file deploy/docker/.env.local down

3.

1
2

docker compose -f deploy/services/runner/compose.runner.server.yml --env-file deploy/docker/.env.server up -d
docker compose -f deploy/services/runner/compose.runner.server.yml --env-file deploy/docker/.env.server down

3.2.3 GitLab Runner Integration

- 139/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/api/pipeline_triggers.html

You can now use the Digital Twins Preview Page to manage and execute your digital twins.

3.2.3 GitLab Runner Integration

- 140/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.3 DTaaS Command Line Interface

This is a command line tool for the INTO-CPS-Association Digital Twins as a Service.

3.3.1 Prerequisite

The DTaaS application with base users and essential containers should be up and running before using the CLI.

3.3.2 Installation

Simply install using:

We recommend installing this in a virutal environment.

Steps to install:

Change the working folder:

We recommend installing this in a virtual environment. Create and activate a virtual environment.

To install, simply:

3.3.3 Usage

Setup

The base DTaaS system should be up and running before adding/deleting users with the CLI.

Additionally, Setup the dtaas.toml file in the cli directory:

Set common.server-dns to domain name of your server. If you want to bring up the server locally, please set this to "localhost".

Set the path to the full system path of the DTaaS directory.

Select Template

The cli uses YAML templates provided in this directory to create new user workspaces. The templates are:

user.local.yml: localhost installation

User.server.yml: multi-user web application application over HTTP

user.server.secure.yml: multi-user web application application over HTTPS

Please note that the cli is not capable of detecting the difference between HTTP and HTTPS modes of web application. Thus if you are
serving web application over HTTPS, please do one extra step.

This will change the user template from insecure to secure.

•

1 cd <DTaaS-directory>/cli

•

•

1 pip install dtaas

•

•

1
2
3
4

[common]
absolute path to the DTaaS application directory
server-dns = "localhost"
path = "/home/Desktop/DTaaS"

1.

2.

3.

1 cp user.server.secure.yml user.server.yml

3.3 DTaaS Command Line Interface

- 141/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Add users

To add new users using the CLI, fill in the users.add list in dtaas.toml with the Gitlab instance usernames of the users to be added

Make sure you are in the cli directory.

Then simply:

The command checks for the existence of files/<username> directory. If it does not exist, a new directory with correct file structure is
created. The directory, if it exists, must be owned by the user executing dtaas command on the host operating system. If the files do not
have the expected ownership rights, the command fails.

CAVEATS

This brings up the containers, without the AuthMS authentication.

Currently the email fields for each user in dtaas.toml are not in use, and are not necessary to fill in. These emails must be configured
manually for each user in the deploy/docker/conf.server files and the traefik-forward-auth container must be restarted. This is done as
follows:

Go to the docker directory

Add three lines to the conf.server file

Run the command for these changes to take effect:

The new users are now added to the DTaaS instance, with authorization enabled.

Delete users

To delete existing users, fill in the users.delete list in dtaas.toml with the Gitlab instance usernames of the users to be deleted.

Make sure you are in the cli directory.

Then simply:

Remember to remove the rules for deleted users in conf.server.

Additional Points to Remember

The user add CLI will add and start a container for a new user. It can also start a container for an existing user if that container was
somehow stopped. It shows a Running status for existing user containers that are already up and running, it doesn't restart them.

1
2
3

[users]
matching user info must present in this config file
add = ["username1","username2", "username3"]

1 dtaas admin user add

•

•

1 cd <DTaaS>/deploy/docker

•

1
2
3

rule.onlyu3.action=auth
rule.onlyu3.rule=PathPrefix(`/user3`)
rule.onlyu3.whitelist = user3@emailservice.com

•

1 docker compose -f compose.server.yml --env-file .env up -d --force-recreate traefik-forward-auth

•

1
2
3

[users]
matching user info must present in this config file
delete = ["username1","username2", "username3"]

•

1 dtaas admin user delete

•

•

3.3.3 Usage

- 142/203 - Copyright © 2022 - 2024 The INTO-CPS Association

user add and user delete CLIs return an error if the add and delete lists in dtaas.toml are empty, respectively.

'.' is a special character. Currently, usernames which have '.'s in them cannot be added properly through the CLI. This is an active issue
that will be resolved in future releases.

•

•

3.3.3 Usage

- 143/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.4 Independent Packages

3.4.1 Independent Packages

The DTaaS development team publishes reusable packages which are then put together to form the complete DTaaS application.

The packages are published on github, npmjs, and docker hub repositories.

The packages on github are published more frequently but are not user tested. The packages on npmjs and docker hub are published at
least once per release. The regular users are encouraged to use the packages from npm and docker hub.

A brief explanation of the packages is given below.

Package Name Description Documentation for Availability

dtaas-web React web application Not useful as
standalone package

docker hub and github

libms Library microservice npm package npmjs and github

container image docker hub and github

runner REST API wrapper for
multiple scripts/programs

npm package npmjs and github

ml-workspace-minimal
(fork of ml-workspace)

User workspace not available docker hub. Please note that this package
is highly experimental and only v0.15.0-
b2 is usable now.

3.4 Independent Packages

- 144/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/orgs/INTO-CPS-Association/packages?repo_name=DTaaS
https://www.npmjs.com/org/into-cps-association
https://hub.docker.com/u/intocps
https://github.com/orgs/INTO-CPS-Association/packages?repo_name=DTaaS
https://www.npmjs.com/org/into-cps-association
https://hub.docker.com/u/intocps
https://hub.docker.com/r/intocps/dtaas-web
https://github.com/INTO-CPS-Association/DTaaS/pkgs/container/dtaas-web
https://www.npmjs.com/package/@into-cps-association/libms
https://github.com/INTO-CPS-Association/DTaaS/pkgs/npm/libms
https://hub.docker.com/r/intocps/libms
https://github.com/INTO-CPS-Association/DTaaS/pkgs/container/libms
https://www.npmjs.com/package/@into-cps-association/runner
https://github.com/INTO-CPS-Association/DTaaS/pkgs/npm/runner
https://github.com/ml-tooling/ml-workspace
https://hub.docker.com/r/intocps/ml-workspace-minimal/tags

3.4.2 Library Microservice

Host Library Microservice

The lib microservice is a simplified file manager serving files over graphQL and HTTP API.

It has two features:

provide a listing of directory contents.

upload and download files

This document provides instructions for installing npm package of library microservice and running the same as a standalone service.

SETUP THE FILE SYSTEM

Outside DTaaS

The package can be used independently of DTaaS. If this is your use case, you do not need any specific file structure. Any valid file
directory is sufficient.

Inside DTaaS

The users of DTaaS expect the following file system structure for their reusable assets.

There is a skeleton file structure in DTaaS codebase. You can copy and create file system for your users.

 INSTALL

The npm package is available in Github packages registry and on npmjs. Prefer the package on npmjs over Github.

Set the registry and install the package with the one of the two following commands

npmjs

Github

•

•

1 sudo npm install -g @into-cps-association/libms # requires no login

1
2

requires login
sudo npm config set @into-cps-association:registry https://npm.pkg.github.com

3.4.2 Library Microservice

- 145/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/files
https://github.com/orgs/INTO-CPS-Association/packages
https://www.npmjs.com/package/@into-cps-association/libms

The github package registry asks for username and password. The username is your Github username and the password is your Github
personal access token. In order for the npm to download the package, your personal access token needs to have read:packages scope.

 USE

Display help.

Please see configuration for explanation of configuration conventions. To use .env as configuration file, run

To run libms with a custom config file,

If the environment file is named something other than .env , for example as .env.libms , you can run

You can press Ctl+C to halt the application. If you wish to run the microservice in the background, use

The lib microservice is now running and ready to serve files.

This microservice can also serve files in a browser with files transferred over HTTP protocol.

This option needs to be enabled with -H http.json flag. A sample http config provided here can be used.

The regular file upload and download options become available.

SERVICE ENDPOINTS

The GraphQL URL: localhost:PORT/lib

The HTTP URL: localhost:PORT/lib/files

The service API documentation is available on user page.

1 libms -h

1 libms

1
2

libms -c FILE-PATH
libms --config FILE-PATH

1 libms -c ".env.libms"

1 nohup libms [-c FILE-PATH] & disown

1 nohup libms [-H http.json] & disown

3.4.2 Library Microservice

- 146/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

Host Library Microservice

The lib microservice is a simplified file manager serving files over graphQL and HTTP API.

It has two features:

provide a listing of directory contents.

transfer a file to user.

This document provides instructions for running docker container to provide a stand alone library microservice.

SETUP THE FILE SYSTEM

Outside DTaaS

The package can be used independently of DTaaS. If this is your use case, you do not need any specific file structure. A valid file directory
named files is sufficient and it should be placed in the directory from which the compose.lib.yml will be run.

Inside DTaaS

The users of DTaaS expect the following file system structure for their reusable assets.

There is a skeleton file structure in DTaaS codebase. You can copy and create file system for your users. Remember to name the directory
containing the file structure as files and place it in the directory from which the compose.lib.yml will be run.

 USE

Use the docker compose file to start the service.

SERVICE ENDPOINTS

The GraphQL URL: localhost:4001/lib

The HTTP URL: localhost:4001/lib/files

The service API documentation is available on user page.

•

•

1
2
3
4

To bring up the container
docker compose -f compose.lib.yml up -d
To bring down the container
docker compose -f compose.lib.yml down

3.4.2 Library Microservice

- 147/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/files

3.5 Guides

3.5.1 Install DTaaS on localhost (GUI)

The installation instructions provided in this README are ideal for running the DTaaS on localhost via a Graphical User Interface (GUI).
This installation is ideal for single users intending to use DTaaS on their own computers.

Design

An illustration of the docker containers used and the authorization setup is shown here.

Requirements

The installation requirements to run this docker version of the DTaaS are:

docker desktop / docker CLI with compose plugin

User account on gitlab.com

The frontend website requires authorization. The default authorization configuration works for gitlab.com. If you desire to use locally hosted
gitlab instance, please see the client docs.

•

•

Tip

3.5 Guides

- 148/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Clone Codebase

If you have not cloned the DTaaS git repository, cloning would be the first step. In case you already have the codebase, you can skip the
cloning step. To clone, do:

In this guide we will assume the contents of the zip file have been extracted to the directory: /home/DTaaS .

The path given here is for Linux OS. It can be Windows compatible as well, for example: C:\\DTaaS . Make sure to use this path and format in
place of /home/DTaaS in this guide.

Starting Portainer

The GUI used to run the application and docker containers will be provided by Portainer Community Edition. It is itself a Docker container
that will create a website at https://localhost:9443 , which will present a graphical interface for starting and stopping the application.

You may follow the official documentation for setting up a Portainer CE Server . Alternatively, open a terminal on your system (Terminal
on Linux / MacOS, Powershell on Windows, etc) and copy the following commands into it:

This will start the Portainer server on your system, which will host its dashboard at https://localhost:9443 . Follow the Initial Setup Guide to
set up an administrator account for Portainer on your system.

Portainer should now be set up on your system, and you can access the dashboard:

1
2

git clone https://github.com/into-cps-association/DTaaS.git
cd DTaaS/deploy/services/gitlab

Tip

1
2

docker volume create portainer_data
docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:2.21.4

3.5.1 Install DTaaS on localhost (GUI)

- 149/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://portainer.io
https://docs.portainer.io/start/install-ce/server/docker
https://docs.portainer.io/start/install-ce/server/setup

The next time you wish to start the Portainer server, run docker start portainer .

Configuration

CREATE USER WORKSPACE

The existing filesystem for installation is setup for user1 . A new filesystem directory needs to be created for the selected user.

You may use your file explorer or an equivalent application to duplicate the files/user1 directory and rename it as files/username where
username is the selected username registered on https://gitlab.com.

ALternatively, you may execute the following commands from the top-level directory of the DTaaS project.

CREATING THE PORTAINER STACK

Portainer Stacks are equivalent to using docker compose commands to manage containers.

Navigate to the Stacks tab on the side panel, and click on the Add Stack button.

Name the Stack anything descriptive, for example: dtaas-localhost .

Select the Upload build method.

Upload the compose file located at deploy/docker/compose.local.yml .

Select the option to load variables from a .env file, and upload the file deploy/docker/.env.local .

Sometimes the .env.local file does not show up in the file explorer. You may fix this by selecting the option to show All Files rather than those
with the extension .env.

Tip

1 cp -R files/user1 files/username

1.

2.

3.

4.

5.

Tip

3.5.1 Install DTaaS on localhost (GUI)

- 150/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.com

The .env.local file contains environment variables that are used by the compose file. Portainer allows you to modify them as shown in the
screenshot above, here is a summary:

Important points to note:

The path examples given here are for Linux OS. These paths can be Windows OS compatible paths as well.

The client configuration file is located at deploy/config/client/env.local.js . If you are following the guide to use HTTPS on localhost, edit the URLs
in this file by replacing http with https .

Once you have configured the environment variables, click on the button Deploy the stack.

Use

The application will be accessible at: http://localhost from web browser. Sign in using your https://gitlab.com account.

All the functionality of DTaaS should be available to you through the single page client now.

Limitations

The library microservice is not included in the localhost installation scenario.

References

Image sources: Traefik logo, ml-workspace, reactjs, gitlab

URL Path Example Value Explanation

DTAAS_DIR '/home/Desktop/DTaaS' Full path to the DTaaS directory. This is an absolute path with no trailing slash.

username1 'user1' Your gitlab username

Tip

1.

2.

3.5.1 Install DTaaS on localhost (GUI)

- 151/203 - Copyright © 2022 - 2024 The INTO-CPS Association

http://localhost
https://gitlab.com
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://krify.co/about-reactjs/
https://gitlab.com

3.5.2 Add User

This page provides steps to adding a user from a DTaaS installation. The username alice is used here to illustrate the steps involved in
removing a user account.

Please do the following:

1. Add user to Gitlab instance:

Add a new account for the new user on the Gitlab instance. Note the username and email of the new account.

2. Create User Workspace:

Use the DTaaS CLI to bring up the workspaces for new users. This brings up the containers, without the backend authorization.

3. Add backend authorization for the user:

Go to the docker directory

Add three lines to the conf.server file

4. Restart the docker container responsible for backend authorization.

5. The new users are now added to the DTaaS instance, with authorization enabled.

•

1 cd <DTaaS>/docker

•

1
2
3

rule.onlyu3.action=auth
rule.onlyu3.rule=PathPrefix(`/alice`)
rule.onlyu3.whitelist = alice@foo.com

1 docker compose -f compose.server.yml --env-file .env up -d --force-recreate traefik-forward-auth

3.5.2 Add User

- 152/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.5.3 Remove User

This page provides steps to remove a user from a DTaaS installation. The username alice is used here to illustrate the steps involved in
removing a user account.

Please do the following:

1. Remove an existing user with the DTaaS CLI.

2. Remove backend authorization for the user:

Go to the docker directory

Remove these three lines from the conf.server file

Run the command for these changes to take effect:

The extra users now have no backend authorization.

3. Remove users to Gitlab instance (optional):

Please see gitlab docs for more help.

4. The user account is now deleted.

Caveat

You cannot delete the two base users that the DTaaS software is installed with. You can only delete the extra users that have been added to
the software.

•

1 cd <DTaaS>/docker

•

1
2
3

rule.onlyu3.action=auth
rule.onlyu3.rule=PathPrefix(`/alice`)
rule.onlyu3.whitelist = alice@foo.com

•

1 docker compose -f compose.server.yml --env-file .env up -d --force-recreate traefik-forward-auth

3.5.3 Remove User

- 153/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/user/profile/account/delete_account.html

3.5.4 Add other services

You should read the documentation about the already available services

This guide will show you how to add more services. In the following example we will be adding MongoDB as a service, but these steps
could be modified to install other services as well.

Adding other services requires more RAM and CPU power. Please make sure the host machine meets the hardware

requirements for running all the services.

1. Add the configuration:

Select configuration parameters for the MongoDB service.

Open the file /deploy/services/services.yml and add the configuration for MongoDB:

2. Add the script:

The next step is to add the script that sets up the MongoDB container with the configuraiton.

Pre-requisite

Configuration Variable Name Description

username the username of the root user in the MongoDB

password the password of the root user in the MongoDB

port the mapped port on the host machine (default is 27017)

datapath path on host machine to mount the data from the MongoDB container

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

services:
 rabbitmq:
 username: "dtaas"
 password: "dtaas"
 vhost: "/"
 ports:
 main: 5672
 management: 15672
 ...
 mongodb:
 username: <username>
 password: <password>
 port: <port>
 datapath: <datapath>
 ...

3.5.4 Add other services

- 154/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Create new file named /deploy/services/mongodb.js and add the following code:

3. Run the script:

Go to the directory /deploy/services/ and run services script with the following commands:

The MongoDB should now be available on services.foo.com:<port>.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#!/usr/bin/node
/* Install the optional platform services for DTaaS */
import { $ } from "execa";
import chalk from "chalk";
import fs from "fs";
import yaml from "js-yaml";

const $$ = $({ stdio: "inherit" });
const log = console.log;
let config;

try {
log(chalk.blue("Load services configuration"));
config = await yaml.load(fs.readFileSync("services.yml", "utf8"));
log(
chalk.green(
"configuration loading is successful and config is a valid yaml file"

)
);

} catch (e) {
log(chalk.red("configuration is invalid. Please rectify services.yml file"));
process.exit(1);

}

log(chalk.blue("Start MongoDB server"));
const mongodbConfig = config.services.mongodb;

try {
log(
chalk.green(
"Attempt to delete any existing MongoDB server docker container"

)
);
await $$`docker stop mongodb`;
await $$`docker rm mongodb`;

} catch (e) {}

log(chalk.green("Start new Mongodb server docker container"));
await $$`docker run -d -p ${mongodbConfig.port}:27017 \
 --name mongodb \
 -v ${mongodbConfig.datapath}:/data/db \
 -e MONGO_INITDB_ROOT_USERNAME=${mongodbConfig.username} \
 -e MONGO_INITDB_ROOT_PASSWORD=${mongodbConfig.password} \
 --restart always \
 mongo:7.0.3`;
log(chalk.green("MongoDB server docker container started successfully"));

1
2

yarn install
node mongodb.js

3.5.4 Add other services

- 155/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.5.5 Link services to local ports

User needs to have an account on server2.

SSH server must be running on server2

To link a port from the service machine (server2) to the local port on the user workspace. You can use ssh local port forwarding technique.

1. Step:

Go to the user workspace, on which you want to map from localhost to the services machine

e.g. foo.com/user1

2. Step:

Open a terminal in your user workspace.

3. Step:

Run the following command to map a port:

Here's an example mapping the RabbitMQ broker service available at 5672 of services.foo.com to localhost port 5672.

Now the programs in user workspace can treat the RabbitMQ broker service as a local service running within user workspace.

Requirements

•

•

•

1 ssh -fNT -L <local_port>:<destination>:<destination_port> <user>@<services.server.com>

1 ssh -fNT -L 5672:localhost:5672 vagrant@services.foo.com

3.5.5 Link services to local ports

- 156/203 - Copyright © 2022 - 2024 The INTO-CPS Association

3.5.6 Make Common Assets Read Only

Why

In some cases you might want to restrict the access rights of some users to the common assets. In order to make the common area read
only, you have to change the install script section performing the creation of user workspaces.

These step needs to be performed before installation of the application.

How

To make the common assets read-only for a user, the following changes need to be made to the compose.server.yml file.

Please note the :ro at the end of the line. This suffix makes the common assets read only.

If you want to have the same kind of read only restriction for new users as well, please make a similar change in cli/users.server.yml .

Note

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

...
user1:
....
volumes:
- ${DTAAS_DIR}/files/common:/workspace/common:ro

....

user2:
....
volumes:
- ${DTAAS_DIR}/files/common:/workspace/common:ro

....

3.5.6 Make Common Assets Read Only

- 157/203 - Copyright © 2022 - 2024 The INTO-CPS Association

4. Frequently Asked Questions

4.1 Abreviations

4.2 General Questions

DTaaS is software platform on which you can create and run digital twins. Please see the features page to get a sense of the things you can do
in DaaS.

DTaaS is a web based interface to allow you to invoke various tools related to work you want to perform with one or more DTs.

DTaaS permits users to run DTs in their private workspaces. These user workspaces are based on Ubuntu 20.04 Operating system.

DTaaS can help you create reusable DT assets only if DT asset authoring tools can work in Ubuntu 20.04 xfce desktop environment.

DTs are just executables, as far as DTaaS is concerned. Users are not constrained to work with DTs in a certain way. The DTaaS suggests
creation of DTs from reusable assets and provides a suggestive structure for DTs. The examples provide more insight into DTaaS way of
working with DTs. But this suggested workflow is not binding on the users.

DTs can be run as services with REST API from within user workspace which can help with service-level DT composition.

DTaaS as such won't help you to install DTs that you get from elsewhere.

The current user interface of DTaaS web application is heavily reliant on the use of Jupyter lab and notebook. The Digital Twins page has
Create / Execute / Analyze sections but all point to Jupyter lab. Web interface. The functionality of these pages is still under development.

DTaaS does not yet have DevOps like automation capabilities.

Commercial DT platforms like Ansys Twin Builder provide tight integration between models, simulation and sensors. This leads to fewer
choices in DT design and implementation. In addition, there is a limitation of vendor lockin. On the other hand, DTaas lets users separate DT
into reusable assets and combine these assets in a flexible way.

Proprietary and commercially licensed software is not available by default on the software platform. But users have private workspaces which
are based on Linux-based xfce Desktop environment. Users can install proprietary and commercially licensed software in their workspaces.
Please see a screencast of using Matlab Simulink within the DTaaS software. The licensed software installed by one user is not available to
another user.

Term Full Form

DT Digital Twin

DTaaS Digital Twin as a Service

PT Physical Twin

What is DTaaS?

What is the scope and current capabilities of DTaaS?

1.

2.

3.

4.

5.

What can not be done inside DTaaS?

1.

2.

3.

Is there any fundamental difference between commercial solutions like Ansys Twin Builder and DTaaS?

Do you provide licensed software like Matlab?

4. Frequently Asked Questions

- 158/203 - Copyright © 2022 - 2024 The INTO-CPS Association

4.3 Digital Twin Assets

The core feature of DTaaS software is to help users create DTs from assets already available in the library. However, it is
possible for users to take advantage of services available in their workspace to install asset authoring tools in their own workspace. These
authoring tools can then be used to create and publish new assets. User workspaces are private and are not shared with other users. Thus any
licensed software tools installed in their workspace is only available to them.

4.4 Digital Twin Models

DTaaS is not a model creation tool. You can put model creation tool inside DTaaS and create new models. The DTaaS itself does not create
digital twin models but it can help users create digital twin models. You can run Linux desktop / terminal tools inside the DTaaS. So you can
create models inside DTaaS and run them using tools that can run in Linux. The Windows only tools can not run in DTaaS.

Well, DTaaS by itself does not produce any models. DTaaS only provides a platform and an ecosystem of services to facilitate digital twins to be
run as services. Since each user has a Linux OS at their disposal, they can also run digital twins that have graphical interface. In summary,
DTaaS is neither a modeling nor simulation tool. If you need these kinds of tools, you need to bring them onto the platform. For example, if you
need Matlab for your work, you need to bring he licensed Matlab software.

The DTaaS as such is agnostic to the kind of models you use. DTaaS can run all kinds of models. This includes behavioral and data models. As
long as you have models and the matching solvers that can run in Linux OS, you are good to go in DTaaS. In some cases, models and solvers
(tools) are bundled together to form monolithic DTs. The DTaaS does not limit you from running such DTs as well. DTaaS does not provide
dedicated solvers. But if you can install a solver in your workspace, then you don't need the platform to provide one.

Currently No. We are looking for users needing this capability. If you have concrete requirements and an example, we can discuss a
way of realizing it in DTaaS.

4.5 Communication Between Physical Twin and Digital Twin

At a very abstract level, there is a communication from physical entity to digital entity and back to physical entity. How this communication
should happen is decided by the person designing the digital entity. The DTaaS can provide communication services that can help you do this
communication with relative ease. You can use InfluxDB, RabbitMQ and Mosquitto services hosted on DTaaS for two communication between
digital and physical entities.

Can DTaaS be used to create new DT assets?

Create Library Assets

Can DTaaS create new DT models?

How can DTaaS help to design geometric model? Does it support 3D modeling and simulation?

Can DTaaS support only the information models (or behavioral models) or some other kind of models?

Does it support XML-based representation and ontology representation?

How can DTaaS control the physical entity? Which technologies it uses for controlling the physical world?

4.3 Digital Twin Assets

- 159/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The real measurements are done at physical twin which are then communicated to the digital twin. Any digital twin platform like DTaaS can
only facilitate this communication of these measurements from physical twin. The DTaaS provides InfluxDB, RabbitMQ and Mosquitto services
for this purpose. These three are probably most widely used services for digital twin communication. Having said that, DTaaS allows you to
utilize other communication technologies and services hosted elsewhere on the Internet.

DTaaS can not understand the static or dynamic nature of data. It can facilitate storing names, units and any other text description of
interesting quantities (weight of batter, voltage output etc). It can also store the data being sent by the physical twin. The distinction between
static and dynamic data needs to be made by the user. Only metadata of the data can reveal such more information about the nature of data. A
tool can probably help in very specific cases, but you need metadata. If there is a human being making this distinction, then the need for
metadata goes down but does not completely go away. In some of the DT platforms supported by manufacturers, there is a tight integration
between data and model. In this case, the tool itself is taking care of the metadata. The DTaaS is a generic platform which can support
execution of digital twins. If a tool can be executed on a Linux desktop / commandline, the tool can be supported within DTaaS. The tool (ex.
Matlab) itself can take care of the metadata requirements.

4.6 Data Management

Yes via platform services.

The DTaaS provids InfluxDB, RabbitMQ, MQTT and MongoDB services. Both the physical twin and digital twin can utilize these protocols for
communication. The IoT (time-series) data can be collected using InfluxDB and MQTT broker services. There is a user interface for InfluxDB
which can be used to analyze the data collected. Users can also manually upload their data files into DTaaS.

Yes via platform services.

InfluxDB, RabbitMQ, MQTT and anything else that can be used from Cloud service providers.

You can store information from multiple sources. The existing InfluxDB services hosted on DTaaS already has a dedicated Influx / Flux query
language for doing sensor fusion, analysis and inferences.

How would you measure a physical entity like shape, size, weight, structure, chemical attributes etc. using DTaaS? Any specific
technology used in this case?

How can real-time data differ from static data and what is the procedure to identify dynamic data? Is there any UI or specific tool
used here?

Can DTaaS collect data directly from sensors?

Does DTaaS support data collection from different sources like hardware, software and network? Is there any user interface or
any tracking instruments used for data collection?

Is DTaaS able to transmit data to cloud in real time?

Which transmission protocol does DTaaS allow?

Does DTaaS support multisource information and combined multi sensor input data? Can it provide analysis and decision-
supporting inferences?

4.6 Data Management

- 160/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Graphical, geometric and images. If you need specific licensed software for the visualization, you will have to bring the license for it. DTaaS
does not support AR/VR.

4.7 Platform Native Services on DTaaS Platform

This is the job of a digital twin. If you have a ready to use digital twin that does the job, DTaaS allows others to use your solution.

4.8 Comparison with other DT Platforms

Here is a qualitative comparison of different DT integration platforms:

Legend: high performance (H), mid performance (M) and low performance (L)

Adopted by Tanusree Roy from Table 4 and 5 of the following paper.

Ref: Naseri, F., Gil, S., Barbu, C., Cetkin, E., Yarimca, G., Jensen, A. C., ... & Gomes, C. (2023). Digital twin of electric vehicle battery systems:
Comprehensive review of the use cases, requirements, and platforms. Renewable and Sustainable Energy Reviews, 179, 113280.

The fundamental confusion comes from the fact that different DT platforms (Azure DT, GE Predix) provide different kind of DT capabilities.
You can run all kinds of models natively in GE Predix. In fact you can run models even next to (on) PTs using GE Predix. But you cannot
natively do that in Azure DT service. You have to do the leg work of integrating with other Azure services or third-party services to get the kind
of capabilities that GE Predix natively provides in one interface. The takeaway is that we pick horses for the courses.

Which kinds of visualization technologies DTaaS can support (e.g. graphical, geometry, image, VR/AR representation)?

Is DTaaS able to detect the anomalies about-to-fail components and prescribe solutions?

All the DT platforms seem to provide different features. Is there a comparison chart?

DT Platforms License DT
Development
Process

Connectivity Security Processing
power,
performance
and Scalability

Data Storage Visualization Modeling and
Simulation

Microsoft Azure
DT

Commercial
Cloud

H H H M H H H

AWS IOT
Greengrass

Open source
commercial

H H H M H H H

Eclipse Ditto Open source M H M H H L L

Asset
Administration
Shell

Open source H H L H M L M

PTC Thingworx Commercial H H H H H M M

GE Predix Commercial M H H M L M L

AU's DTaaS Open source H H L L M M M

All the comparisons between DT platforms seems so confusing. Why?

4.7 Platform Native Services on DTaaS Platform

- 161/203 - Copyright © 2022 - 2024 The INTO-CPS Association

4.9 GDPR Concerns

The DTaaS software platform does not store any personal information of users. It only stores username to identify users and these usernames
do not contain enough information to deduce the true identify of users.

The default installation requires a HTTPS terminating reverse proxy server from user to the DTaaS software installation. The administrators of
DTaaS software can also install HTTPS certificates into the application. The codebase can generate HTTPS application and the users also have
the option of installing their own certificates obtained from certification agencies such as LetsEncrypt.

The current installation of DTaaS software runs on Aarhus University servers. The university network offers firewall access control to servers
so that only permitted user groups have access to the network and physical access to the server.

There is a two-level authorization mechanism in place in each default installation of DTaaS. The first-level is HTTP basic authorization over
secure HTTPS connection. The second-level is the OAuth PKCE authorization flow for each user. The OAuth authorization is provider by a
Gitlab instance. The DTaaS does not store the account and authorization information of users.

The platform does not store personal data of users.

There are two roles for users on the platform. One is the administrator and the other one is user. The user roles are managed by the
administrator.

Does your platform adhere to GDPR compliance standards? If so, how?

Which security measures are deployed? How is data encrypted (if exists)?

What security measures does your cloud provider offer?

How is user access controlled and authenticated?

Does you platform manage personal data? How is data classified and tagged based on the sensitivity? Who has access to the
critical data?

How are identities and roles managed within the platform?

4.9 GDPR Concerns

- 162/203 - Copyright © 2022 - 2024 The INTO-CPS Association

5. Developer

5.1 Contributors Guide

Welcome to the Digital Twin as a Service (DTaaS) contributing guide

Thank you for investing your time in contributing to our project!

Read our Code of Conduct to keep our community approachable and respectable.

In this guide you will get an overview of the contribution workflow from opening an issue, creating a PR, reviewing, and merging the PR.

5.1.1 Project Goals

It helps development team members get familiar with the DTaaS project software design, and development processes. Please see
developer-specific Slides, Video, and Research paper.

5.1.2 Development Environment

Please use the steps given here to have suitable development environment.

DevContainers

There is a devcontainer configuration (.devcontainer/devcontainer.json) for the project. Please use it to get a dockerized development
environment. DevContainer is the easiest way to get started.

Ubuntu/Linux

The code base has been developed for most part on Ubuntu/Linux Operating System.Thus certain parts of the code base might have bugs
when run on Windows. At the moment, only runner has problems running on non-Linux OS.

The development environment can be installed by using the following scripts.

 The docker images are large and are likely to consume about 5GB of bandwidth and 15GB of space. You will have to download the
docker images on a really good network.

Windows

The development environment scripts for Windows are still buggy. Any help in improving them is greatly appreciated. Given that, caveat,
please use the following installation steps for Windows.

Two powershell installation scripts, namely base.ps1 and env.ps1 are available to install the required software packages. But errors might
crop up due to missing environment variables. The potential errors are:

npm is not recognized......... in base.ps1 .

gem is not recognized......... in env.ps1

If you encounter these errors, remember to include node and ruby installation locations in PATH environment variable
(Settings --> search for "system environment variables" --> Advanced --> Environment Variables --> PATH).

The base.ps1 and env.ps1 scripts can be run again after setting the correct PATH environment variable.

1
2

bash script/env.sh
bash script/docker.sh

1.

2.

5. Developer

- 163/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/DTaaS-developer-overview_march2024.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/DTaaS-developer-overview_march2024.mp4
https://arxiv.org/abs/2305.07244

PRE-INSTALL NODEJS AND RUBY SOFTWARE

Another way to solve the PATH environment problem is to install Nodejs and Ruby software packages before running the powershell
scripts.

Install the latest stable version of NodeJS from the official NodeJS website.

Install Ruby from official Ruby website and follow all the defaults during the installation.

RUN SCRIPTS

Then, open powershell with administrative priviledges and run the following commands in the given order:

 The docker images are large and are likely to consume about 5GB of bandwidth and 15GB of space. You will have to download the
docker images on a really good network.

5.1.3 Development Workflow

To manage collaboration by multiple developers on the software, a development workflow is in place. Each developer should follow these
steps:

Fork of the main repository into your github account.

Setup Code Climate and Codecov for your fork. The codecov does not require secret token for public repositories.

Install git-hooks for the project.

Use Fork, Branch, PR workflow.

Work in your fork and open a PR from your working branch to your feature/distributed-demo branch. The PR will run all the github actions,
code climate and codecov checks.

Resolve all the issues identified in the previous step.

Once changes are verified, a PR should be made to the feature/distributed-demo branch of the upstream DTaaS repository.

The PR will be merged after checks by either the project administrators or the maintainers.

Remember that every PR should be meaningful and satisfies a well-defined user story or improve the code quality.

5.1.4 Code Quality

The project code qualities are measured based on:

Linting issues identified by Code Climate

Test coverage report collected by Codecov

Successful github actions

Code Climate

Code Climate performs static analysis, linting and style checks. Quality checks are performed by codeclimate are to ensure the best
possible quality of code to add to our project.

While any new issues introduced in your code would be shown in the PR page itself, to address any specific issue, you can visit the issues
or code section of the codeclimate page.

It is highly recommended that any code you add does not introduce new quality issues. If they are introduced, they should be fixed
immediately using the appropriate suggestions from Code Climate, or in worst case, adding a ignore flag (To be used with caution).

1.

2.

1
2
3

powershell -F script/base.ps1
powershell -F script/env.ps1
powershell -F script/docker.ps1

1.

2.

3.

4.

5.

6.

7.

8.

•

•

•

5.1.3 Development Workflow

- 164/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://nodejs.org/en
https://github.com/oneclick/rubyinstaller2/releases/download/RubyInstaller-3.1.2-1/rubyinstaller-devkit-3.1.2-1-x64.exe
https://docs.codeclimate.com/docs/getting-started-with-code-climate
https://docs.codecov.com/docs/quick-start
https://gun.io/news/2017/01/how-to-github-fork-branch-and-pull-request/
https://github.com/into-cps-association/DTaaS
https://codeclimate.com/github/INTO-CPS-Association/DTaaS
https://codecov.io/gh/INTO-CPS-Association/DTaaS
https://github.com/INTO-CPS-Association/DTaaS/actions

Codecov

Codecov keeps track of the test coverage for the entire project. For information about testing and workflow related to that, please see the
testing page.

Github Actions

The project has multiple github actions defined. All PRs and direct code commits must have successful status on github actions.

5.1.4 Code Quality

- 165/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/.github/workflows

5.2 Contributor Covenant Code of Conduct

5.2.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone,
regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

5.2.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

Demonstrating empathy and kindness toward other people

Being respectful of differing opinions, viewpoints, and experiences

Giving and gracefully accepting constructive feedback

Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

The use of sexualized language or imagery, and sexual attention or advances of any kind

Trolling, insulting or derogatory comments, and personal or political attacks

Public or private harassment

Publishing others' private information, such as a physical or email address, without their explicit permission

Other conduct which could reasonably be considered inappropriate in a professional setting

5.2.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair
corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

5.2.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in
public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media
account, or acting as an appointed representative at an online or offline event.

5.2.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for
enforcement at Open new issue. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

5.2.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in
violation of this Code of Conduct:

•

•

•

•

•

•

•

•

•

•

5.2 Contributor Covenant Code of Conduct

- 166/203 - Copyright © 2022 - 2024 The INTO-CPS Association

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an
explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited
interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community
spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time.
No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is
allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior,
harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

5.2.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.contributor-covenant.org/version/
2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla's code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are
available at https://www.contributor-covenant.org/translations.

5.2.7 Attribution

- 167/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://www.contributor-covenant.org
https://github.com/mozilla/diversity

5.3 Secrets for Github Action

The Github actions require the following secrets to be obtained from docker hub:

Remember to add these secrets to Github Secrets Setting of your fork.

Secret Name Explanation

DOCKERHUB_SCOPE Username or organization name on docker hub

DOCKERHUB_USERNAME Username on docker hub

DOCKERHUB_TOKEN API token to publish images to docker hub, with Read , Write and Delete permissions

NPM_TOKEN Token to publish npm packages to the default npm registry.

5.3 Secrets for Github Action

- 168/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://hub.docker.com
https://npmjs.com
https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions#creating-secrets-for-a-repository

5.4 System

5.4.1 System Overview

User Requirements

The DTaaS software platform users expect a single platform to support the complete DT lifecycle. To be more precise, the platform users
expect the following features:

Author – create different assets of the DT on the platform itself. This step requires use of some software frameworks and tools whose sole
purpose is to author DT assets.

Consolidate – consolidate the list of available DT assets and authoring tools so that user can navigate the library of reusable assets. This
functionality requires support for discovery of available assets.

Configure – support selection and configuration of DTs. This functionality also requires support for validation of a given configuration.

Execute – provision computing infrastructure on demand to support execution of a DT.

Explore – interact with a DT and explore the results stored both inside and outside the platform. Exploration may lead to analytical insights.

Save – save the state of a DT that’s already in the execution phase. This functionality is required for on demand saving and re-spawning of
DTs.

Services – integrate DTs with on-platform or external services with which users can interact with.

Share – share a DT with other users of their organisation.

System Architecture

The figure shows the system architecture of the the DTaaS software platform.

1.

2.

3.

4.

5.

6.

7.

8.

5.4 System

- 169/203 - Copyright © 2022 - 2024 The INTO-CPS Association

SYSTEM COMPONENTS

The users interact with the software platform using a webapp. The service router is a single point of entry for direct access to the platform
services. The service router is responsible for controlling user access to the microservice components. The service mesh enables discovery
of microservices, load balancing and authorization functionalities.

In addition, there are microservices for catering to managing DT reusable assets, platform services, DT lifecycle manager, DT execution
manager, accouting and security. The microservices are complementary and composable; they fulfil core requirements of the system.

The microservices responsible for satisfying the user requirements are:

The security microservice implements role-based access control (RBAC) in the platform.

The accounting microservice is responsible for keeping track of the live status of platform, DT asset and infrastructure usage. Any
licensing, usage restrictions need to be enforced by the accounting microservice. Accounting is a pre-requisite to commercialisation of the
platform. Due to significant use of external infrastructure and resources via the platform, the accounting microservice needs to interface
with accounting systems of the external services.

User Workspaces are virtual environments in which users can perform lifecycle operations on DTs. These virtual environments are either
docker containers or virtual machines which provide desktop interface to users.

Reusable Assets are assets / parts from which DTs are created. Further explation is available on the assets page

Services are dedicated services available to all the DTs and users of the DTaaS platform. Services build upon DTs and provide user interfaces
to users.

DT Execution Manager provides virtual and isolated execution environments for DTs. The execution manager is also responsible for
dynamic resource provisioning of cloud resources.

DT Lifecycle Manager manages the lifecycle operations on all DTs. It also directs DT Execution Manager to perform execute, save and
terminate operations on DTs.

If you are interested, please take a look at the C4 architectural diagram.

A mapping of the architectural components to related pages in the documentation is available in the table.

References

Font sources: fileformat

1.

2.

3.

4.

5.

6.

7.

System Component Doc Page(s)

Service Router Traefik Gateway

Web Application React Webapplication

Reusable Assets Library Microservice

Digital Twins and DevOps Integrated Gitlab

Services Third-party Services (MQTT, InfluxDB, RabbitMQ, Grafana and MongoDB)

DT Lifecycle Not available yet

Security Gitlab client OAuth and server OAuth

Digital Twins as Services DT Runner

Accounting Not available yet

Execution Manager Not available yet

5.4.1 System Overview

- 170/203 - Copyright © 2022 - 2024 The INTO-CPS Association

C4-L2_diagram.png
https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/servers/config/gateway#the-gateway-server
https://www.fileformat.info

5.4.2 Current Status

The DTaaS software platform is currently under development. Crucial system components are in place with ongoing development work
focusing on increased automation and feature enhancement. The figure below shows the current status of the development work.

A C4 representation of the same diagram is also available.

 User Security

There is a two-level authorization mechanisms in place for the react website and the Traefik gateway.

The react website component uses Gitlab for user authorization using OAuth protocol.

GATEWAY AUTHORIZATION

The Traefik gateway has OAuth2 web server authorization provided by Traefik-forward-auth microservice. This authorization protects all
the microservices and workspaces running in the backend.

 User Workspaces

All users have dedicated dockerized-workspaces. These docker-images are based on container images published by mltooling group.

Thus DT experts can develop DTs from existing DT components and share them with other users. A file server has been setup to act as a DT
asset repository. Each user gets space to store private DT assets and also gets access to shared DT assets. Users can synchronize their
private DT assets with external git repositories. In addition, the asset repository transparently gets mapped to user workspaces within
which users can perform DT lifecycle operations. There is also a library microservice which in the long-run will replace the file server.

Users can run DTs in their workspaces and also permit remote access to other users. There is already shared access to internal and
external services. With these two provisions, users can treat live DTs as service components in their own software systems.

 Platform Services

There are four external services integrated with the DTaaS software platform. They are: InfluxDB, Grafana, RabbitMQ, MQTT, and
MongoDB.

These services can be used by DTs and PTs for communication, storing and visualization of data. There can also be monitoring services
setup based on these services.

5.4.2 Current Status

- 171/203 - Copyright © 2022 - 2024 The INTO-CPS Association

current-status-developer-2.png
https://github.com/thomseddon/traefik-forward-auth
https://github.com/ml-tooling/ml-workspace
https://github.com/influxdata/influxdb
https://github.com/grafana/grafana
https://github.com/rabbitmq/rabbitmq-server
https://github.com/eclipse/mosquitto
https://github.com/mongodb/mongo

Development Priorities

The development priorities for the DTaaS software development team are:

DevOps from React frontend website

Upgrade software stack of user workspaces

Increased automation of installation procedures

DT Runner (API Interface to DT)

DT Configuration DSL ín the form of YAML schema

Your contributions are highly welcome.

References

Font sources: fileformat

•

•

•

•

•

5.4.2 Current Status

- 172/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/servers/execution/runner
https://www.fileformat.info

5.5 OAuth2 Authorization

5.5.1 OAuth 2.0 Summary

The Auth MS works on the OAuth 2.0 RFC. This document provides a brief summary of the working of the OAtuh 2.0 technology.

Entities

OAuth2, as used for user identity verification, has 3 main entities:

The User: This is the entity whose identity we are trying to verify/know. In our case, this is the same as the user of the DTaaS software.

The Client: This is the entity that wishes to know/verify the identity of a user. In our case, this is the Auth MS (initialised with a Gitlab
application). This shouldn’t be confused with the frontend website of DTaaS (referred to as Client in the previous section).

The OAuth2 Identity Provider: This is the entity that allows the client to know the identity of the user. In our case, this is GitLab. Most
commonly, users have an existing, protected account with this entity. The account is registered using a unique key, like an email ID or
username and is usually password protected so that only that specific user can login using that account. After the user has logged in,
they will be asked to approve sharing their profile information with the client. If they approve, the client will have access to the user’s
email id, username, and other profile information. This information can be used to know/verify the identity of the user.

Note: In general, it is possible for the Authorization server (which asks user for approval) and the Resource (User Identity) provider to be 2
different servers. However, in our case the Gitlab instance itself handles both the functions, through different API endpoints. The concepts
remain the same. Thus, we only discuss the 3 main entities, the User, the OAuth2 Client and the Gitlab instance in our discussion.

THE OAUTH2 CLIENT

Many sites allow you to initialise an OAuth2 client. For our purposes, we will use Gitlab itself, by making an ”application” in Gitlab.
However, it is not necessary to initialise a client using the same website as the identity provider. These are separate things. Our OAuth2
client is initialized by creating and configuring a Gitlab instance-wide application. There are two main things in this configuration:

Redirect URI: It is the URI where the users are redirected to after they approve sharing information with the client.

Scopes: These are the types and levels of access that the client can have over the user’s profile. For our purposes, we only require the
read user scope, which allows us to access the user’s profile information for knowing the identity.

After the GitLab application is successfully created, we are provided a Client ID and Client Secret. This means our initialization is complete.
This Client ID and Client Secret can be used in any application, essentially making that application the OAuth2 Client. This is why the Client
secret should never be shared. We will use this Client ID and Client secret in our Auth MS, making it an OAuth2 Client application. It will
now be able to follow the OAuth2 workflow to verify the identity of users.

OAuth 2.0 Workflows

Two major different OAuth2.0 flows are used in DTaaS.

OAUTH2 AUTHORIZATION CODE FLOW

This flow involves several steps and the exchange of an authorization code for an access tokens to ensure secure authorization. This flow
is used for the DTaaS AuthMS, which is responsible for securing all backend DTaaS services

The OAuth2 workflow is initiated by the Client (Auth MS) whenever it requires knowing the identity of the user. Briefly, the flow starts
when the Auth MS sends an authorization request to Gitlab. The Auth MS tries to obtain an access token, using which it can gather user
information. Once it has user information, it can know the identity of the user and check whether the user has permission to access the
requested resource.

•

•

•

•

•

5.5 OAuth2 Authorization

- 173/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The requests made by the Auth MS to the OAuth2 provider are abbreviated. A detailed explanation of the workflow for DTaaS specifically
can be found in the AuthMS implementation docs

OAUTH2 PKCE (PROOF KEY FOR CODE EXCHANGE) FLOW

This is an extension to the OAuth2 Authorization Code Flow designed to provide an additional layer of security, particularly for public
clients that cannot securely store client secrets. PKCE mitigates certain attack vectors, like authorization code interception.

The DTaaS client website login works based on the PKCE OAuth2.0 flow. More information about the details of this flow can be found here

5.5.1 OAuth 2.0 Summary

- 174/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-pkce

5.5.2 System Design of DTaaS Authorization Microservice

DTaaS requires backend authorization to protect its backend services and user workspaces. This document details the system design of the
DTaaS Auth Microservice which is responsible for the same.

Requirements

For our purpose, we require the Auth MS to be able to handle only requests of the general form ”Is User X allowed to access /BackendMS/
example?”.

If the user’s identity is correctly verified though the GitLab OAuth2 provider AND this user is allowed to access the requested microservice/
action, then the Auth MS should respond with a 200 (OK) code and let the request pass through the gateway to the required microservice/
server.

If the user’s identity verification through GitLab OAuth2 fails OR this user is not permitted to access the request resource, then the Auth
MS should respond with a 40X (NOT OK) code, and restrict the request from going forward.

Forward Auth Middleware in Traefik

Traefik allows middlewares to be set for the routes configured into it. These middlewares intercept the route path requests, and perform
analysis/modifications before sending the requests ahead to the services. Traefik has a ForwardAuth middleware that delegates
authentication to an external service. If the external authentication server responds to the middleware with a 2XX response codes, the
middleware acts as a proxy, letting the request pass through to the desired service. However, if the external server responds with any
other response code, the request is dropped, and the response code returned by the external auth server is returned to the user

(source: Treafik documentation)

Thus, an Auth Microservice can be integrated into the existing gateway and DTaaS system structure easily by adding it as the external
authentication server for ForwardAuth middlewares. These middlewares can be added on whichever routes/requests require
authentication. For our specific purpose, this will be added to all routes since we impose atleast identity verification of users for any
request through the gateway

Auth MS Design

The integrated Auth MS should thus work as described in the sequence diagram.

5.5.2 System Design of DTaaS Authorization Microservice

- 175/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://doc.traefik.io/traefik/middlewares/http/forwardauth/

Any request made by the user is made on the React website, i.e. the frontend of the DTaaS software.

This request then goes through the Traefik gateway. Here it should be interrupted by the respective ForwardAuth middleware.

The middleware asks the Auth MS if this request for the given user should be allowed.

The Auth MS, i.e. the Auth server verifies the identity of the user using OAuth2 with GitLab, and checks if this user should be allowed to
make this request.

If the user is verified and allowed to make the request, the Auth server responds with a 200 OK to Traefik Gateway (more specifically to
the middleware in Traefik)

Traefik then forwards this request to the respective service. A response by the service, if any, will be passed through the chain back to
the user.

However, If the user is not verified or not allowed to make this request, the Auth server responds with a 40x to Traefik gateway.

Traefik will then drop the request and respond to the Client informing that the request was forbidden. It will also pass the Auth servers
response code

•

•

•

•

•

•

•

•

5.5.2 System Design of DTaaS Authorization Microservice

- 176/203 - Copyright © 2022 - 2024 The INTO-CPS Association

5.5.3 Auth Microservice

This document details the workflow and implementation of the DTaaS Auth Microservice. Please go through the System Design and the
summary of the OAuth2.0 technology to be able to understand the content here better.

Workflow

USER IDENTITY USING OAUTH2.0

We define some constants that will help with the following discussion:

CLIENT ID: The OAuth2 Client ID of the Auth MS

CLIENT SECRET: The OAuth2 Client Secret of Auth MS

REDIRECT URI: The URI where the user is redirected to after the user has approved sharing of information with the client.

STATE: A random string used as an identifier for the specific "GET authcode" request (Figure 3.3)

AUTHCODE: The one-use-only Authorization code returned by the OAuth2 provider (GitLab instance) in response to "GET authcode"
after user approval.

Additionally, let's say DTaaS uses a dedicated gitlab instance hosted at the URL https://gitlab.foo.com (instead of https://foo.com)

A successful OAuth2 workflow (Figure 3.3) has the following steps:

The user requests a resource, say GET/BackendMS

The Auth MS intercepts this request, and starts the OAuth2 process.

The Auth MS sends a authorization request to the Gitlab instance.

•

•

•

•

•

•

•

•

5.5.3 Auth Microservice

- 177/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.foo.com
https://foo.com

This is written in shorthand as GET/authcode. The actual request (a user redirect) looks like:

Here the gitlab.foo.com/oauth/authorize is the specific endpoint of the Gitlab instance that handles authorisation code requests.

The query parameters in the request include the expected response type, which is fixed as ”code”, meaning that we expect an
Authorization code. Other query parameters are the client id, the redirect uri, the scope which is set to read user for our purpose, and the
state (the random string to identify the specific request).

The OAuth2 provider redirects the user to the login page. Here the user logs into their protected account with their username/email ID
and password.

The OAuth2 provider then asks the user to approve/deny sharing the requested information with the Auth MS. The user should approve
this for successful authentication.

After approval, the user is redirected by the GitLab instance to the REDIRECT URI. This URI has the following form:

The REDIRECT URI is as defined previously, during the OAuth2 Client initialisation, i.e. the same as the one provided in the ”GET authcode”
request by the Auth MS. The query parameters are provided by the Gitlab instance. These include the AUTHCODE which is the
authoriation code that the Auth MS had requested, and the STATE which is the same random string in the ”GET authcode” request.

The Auth MS retrieves these query parameters. It verifies that the STATE is the same as the random string it provided during the "GET
authcode" request. This confirms that the AUTHCODE it has received is in response to the specific request it had made.

The Auth MS uses this one-use-only AUTHCODE to exchange it for a general access token. This access token wouldn’t be one-use-only,
although it would expire after a specified duration of time. To perform this exchange, the Auth MS makes another request to the GitLab
instance. This request is written in shorthand as GET/access_token in the sequence diagram. The true form of the request is:

The request to get a token by exchanging an authorization code, is actually a POST request (for most OAuth2 providers). The https://
gitlab.foo.com/oauth/token API endpoint handles the token exchange requests. The parameters sent with the POST request are the client
ID, the client secret, the AUTHCODE and the redirect uri. The grant type parameter is always set to the string ”authorization code”, which
conveys that we will be exchanging an authentication code for an access token.

The Gitlab instance exchanges a valid AUTHCODE for an Access Token. This is sent as a response to the Auth MS. An example response is
of the following form:

The access token field provides the string that can be used as an access token in the headers of requests tryng to access user information.
The token type field is usually ”bearer”, the expires in field specifies the time in seconds for which the access token will be valid, and the

1
2
3
4
5
6

https ://gitlab.foo.com/oauth/
authorize?
response_type=code&
client_id=OAUTH_CLIENT_ID&
redirect_uri=REDIRECT_URI&
scope=read_user&state = STATE

•

•

•

1 REDIRECT_URI?code=AUTHCODE&state=STATE

•

•

1
2
3
4
5
6

POST https://gitlab.foo.com/oauth/token,
parameters = 'client_id=OAUTH_CLIENT_ID&
client_secret=OAUTH_CLIENT_SECRET&
code=AUTHCODE&
grant_type=authorization_code&
redirect_uri=REDIRECT_URI'

•

1
2
3
4
5
6
7

{
"access_token": "d8aed28aa506f9dd350e54",
"token_type": "bearer",
"expires_in": 7200,
"refresh_token":"825f3bffb2544b976633a1",
"created_at": 1607635748

}

5.5.3 Auth Microservice

- 178/203 - Copyright © 2022 - 2024 The INTO-CPS Association

created at field is the Epoch timestamp at which the token was created. The refresh token field has a string that can be used to refresh the
access token, increasing it’s lifetime. However we do not make use of the refresh token field. If an access token expires, the Auth MS simply
asks for a new one. TOKEN is the access token string returned in the response.

The Auth MS has finally obtained an access token that it can use to retrieve the user’s information. Note that if the Auth MS already had
an existing valid access token for information about this user, the steps above wouldn’t be necessary, and thus wouldn’t be performed
by the Auth MS. The steps till now in the sequence diagram are simply to get a valid access token for the user information.

The Auth MS makes a final request to the Gitlab instance, shorthanded as GET user_details in the sequence diagram. The actual request
is of the form:

Here, https://gitlab.foo.com/api/v4/user is the API endpoint that responds with user information. An authorization header is required on
the request, with a valid access token. The required header is added here, and TOKEN is the access token that the Auth MS holds.

The Gitlab instance verifies the access token, and if it is valid, responds with the required user information. This includes username,
email ID, etc. An example response looks like:

The important fields from this response are the ”email”, ”username” keys. These keys are unique to a user, and thus provide an identity to
the user.

The Auth MS retrieves the values of candidate key fields like ”email”, ”username” from the response. Thus, the Auth MS now knows the
identity of the user.

CHECKING USER PERMISSIONS - AUTHORIZATION

An important feature of the Auth MS is to implement access policies for DTaaS resources. We may have requirements that certain
resources and/or microservices in DTaaS should only be accessible to certain users. For example, we may want that /BackendMS/user1
should only be accessible to the user who has username user1. Another example may be that we may want /BackendMS/group3 to only be
available to users who have an email ID in the domain @gmail.com. The Auth MS should be able to impose these restrictions and make
certain services selectively available to certain users. There are two steps to doing this:

Firstly, the user’s identity should be known and trusted. The Auth MS should know the identity of a user and believe that the user is who
they claim to be. This has been achieved in the previous section

Secondly, this identity should be analysed against certain rules or against a database of allowed users, to determine whether this user
should be allowed to access the requested resource.

The second step requires, for every service, either a set of rules that define which users should be allowed access to the service, or a
database of user identities that are allowed to access the service. This database and/or set of rules should use the user identities, in our
case the email ID or username, to decide whether the user should be allowed or not. This means that the rules should be built based on the

•

•

1
2

GET https ://gitlab.foo.com/api/v4/user
"Authorization": Bearer <TOKEN>

•

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

{
"id": 8,
"username": "UserX",
"name": "XX",
"state": "active",
"web_url": "http://gitlab.foo.com/UserX",
"created_at":"2023-12-03 T10:47:21.970 Z",
"bio": "",
"location": "",
"public_email": null,
"skype": "",
"linkedin": "",
"twitter": "",
"organization": "",
"job_title": "",
"work_information": null,
"followers": 0,
"following": 0,
"is_followed ": false,
"local_time": null,
"last_sign_in_at": "2023-12-13 T12:46:21.223 Z",
"confirmed_at": "2023-12-03 T10:47:21.542 Z ",
"last_activity_on": "2023-12-13",
"email": "UserX@localhost",
"projects_limit": 100000,

}

•

•

•

5.5.3 Auth Microservice

- 179/203 - Copyright © 2022 - 2024 The INTO-CPS Association

kind of username/ email ID the user has, say maybe using some RegEx. In the case of a database, the database should have the user
identity as a key. For any service, we can simply look up if the key exists in the database or not and allow/deny the user access based on
that.

In the sequence diagram, the Auth MS has a self-request marked as ”Checks user permissions” after receiving the user identity from the
Gitlab instance. This is when the Auth MS compares the identity of the user to the rules and/or database it has for the requested service.
Based on this, if the given identity has access to the requested resource, the Auth MS responds with a 200 OK. This finally marks a
succcessful authentication, and the user can now access the requested resource. Note: Again, the Auth MS and user do not communicate
directly. All requests/responses of the Auth MS are with the Traefik gateway, not the User directly. Infact, the Auth MS is the external server
used by the ForwardAuth middleware of the specific route, and communicates with this middleware. If the authentication is successful,
The gateway forwards the request to the specific resource when the 200 OK is recieved, else it drops the request and returns the error code
to the user.

Implementation

TRAEFIK-FORWARD-AUTH

The implementation approach is setting up and configuring the open source thomseddon/traefik-forward-auth for our specific use case.
This would work as our Auth microservice.

The traefik-forward-auth software is available as a docker.io image. This works as a docker container. Thus there are no dependency
management issues. Additionally, it can be added as a middleware server to traefik routers. Thus, it needs atleast Traefik to work along
with it properly. It also needs active services that it will be controlling access to. Traefik, the traefikforward-auth service and any services
are thus, treated as a stack of docker containers. The main setup needed for this system is configuring the compose.yml file.

There are three main steps of configuring the Auth MS properly.

The traefik-forward-auth service needs to be configured carefully. Firstly, we set the environment variables for our specific case. Since,
we are using Gitlab, we use the generic-oauth provider configuration. Some important variables that are required are the OAuth2 Client
ID, Client Secret, Scope. The API endpoints for getting an AUTHCODE, exchanging the code for an access token and getting user
information are also necessary

Additionally, it is necessary to create a router that handles the REDIRECT URI path. This router should have a middleware which is set to
traefik-forward-auth itself. This is so that after approval, when the user is taken to REDIRECT URI, this can be handled by the gateway and
passed to the Auth service for token exchange. We add the ForwardAuth middleware here, which is a necessary part of our design as
discussed before. We also add a load balancer for the service. We also need to add a conf file as a volume, for selective authorization rules
(discussed later). This is according to the suggested configuration. Thus, we add the following to our docker services:

The traefik-forward-auth service should be added to the backend services as a middleware.

•

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

traefik−forward−auth:
image: thomseddon/traefik−forward−auth:latest
volumes:
- <filepath>/conf:/conf

environment:
- DEFAULT_PROVIDER = generic - oauth
- PROVIDERS_GENERIC_OAUTH_AUTH_URL=https://gitlab.foo.com/oauth/authorize
- PROVIDERS_GENERIC_OAUTH_TOKEN_URL=https://gitlab.foo.com/oauth/token
- PROVIDERS_GENERIC_OAUTH_USER_URL=https://gitlab.foo.com/api/v4/user
- PROVIDERS_GENERIC_OAUTH_CLIENT_ID=OAUTH_CLIENT_ID
- PROVIDERS_GENERIC_OAUTH_CLIENT_SECRET=OAUTH_CLIENT_SECRET
- PROVIDERS_GENERIC_OAUTH_SCOPE = read_user
- SECRET = a - random - string
INSECURE_COOKIE is required if
not using a https entrypoint
- INSECURE_COOKIE = true

labels:
- "traefik.enable=true"
- "traefik.http.routers.redirect.entryPoints=web"
- "traefik.http.routers.redirect.rule=PathPrefix(/_oauth)"
- "traefik.http.routers.redirect.middlewares=traefik-forward-auth"
- "traefik.http.middlewares.traefik-forward-auth.forwardauth.address=http://traefik-forward-auth:4181"
- "traefik.http.middlewares.traefik-forward-auth.forwardauth.authResponseHeaders=X-Forwarded-User"
- "traefik.http.services.traefik-forward-auth.loadbalancer.server.port=4181"

•

5.5.3 Auth Microservice

- 180/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/thomseddon/traefik-forward-auth

To do this, the docker-compose configurations of the services need to be updated by adding the following lines:

This creates a router that maps to the required route, and adds the auth middleware to the required route.

Finally, we need to set user permissions on user identities by creating rules in the conf file. Each rule has a name (an identifier for the
rule), and an associated route for which the rule will be invoked. The rule also has an action property, which can be either ”auth” or
”allow”. If action is set to ”allow”, any requests on this route are allowed to bypass even the OAuth2 identification. If the action is set to
”auth”, requests on this route will require User identity OAuth2 and the system will follow the sequence diagram. For rules with
action=”auth”, the user information is retrieved. The identity we use for a user is the user’s email ID. For ”auth” rules, we can configure
two types of User restrictions/permissions on this identity:

Whitelist - This would be a list of user identities (email IDs in our case) that are allowed to access the corresponding route.

Domain - This would be a domain (example: gmail.com), and only email IDs (user identities) of that domain (example:
johndoe@gmail.com) would be allowed access to the corresponding route.

Configuring any of these two properties of an ”auth” rule allows us to selectively permit access to certain users for certain resources. Not
configuring any of these properties for an ”auth” rule means that the OAuth2 process is carried out and the user identity is retrieved, but
all known user identities (i.e. all users that successfully complete the OAuth) are allowed to access the resource.

DTaaS currently uses only the whitelist type of rules.

These rules can be used in 3 different ways described below. The exact format of lines to be added to the conf file are also shown.

No Auth - Serves the Path(‘/public‘) route. A rule with action=”allow” should be imposed on this.

User specific: Serves the Path(‘/user1‘) route. A rule that only allows ”user1@localhost” identity should be imposed on this

Common Auth - Serves the Path(‘/common‘) route. A rule that requires OAuth, i.e. with action=”allow”, but allows all valid and known
user identities should be imposed on this.

1
2

- "traefik.http.routers.<service-router>.rule=Path(/<path>)"
- "traefik.http.routers.<service-router>.middlewares=traefik-forward-auth"

•

•

•

•

1
2

rule.noauth.action=allow
rule.noauth.rule=Path(`/public`)

•

1
2
3

rule.onlyu1.action=auth
rule.onlyu1.rule=Path(`/user1`)
rule.onlyu1.whitelist=user1@localhost

•

1
2

rule.all.action = auth
rule.all.rule = Path(`/common`)

5.5.3 Auth Microservice

- 181/203 - Copyright © 2022 - 2024 The INTO-CPS Association

5.6 Testing

5.6.1 Common Questions on Testing

What is Software Testing

Software testing is a procedure to investigate the quality of a software product in different scenarios. It can also be stated as the process of
verifying and validating that a software program or application works as expected and meets the business and technical requirements
that guided design and development.

Why Software Testing

Software testing is required to point out the defects and errors that were made during different development phases. Software testing also
ensures that the product under test works as expected in all different cases – stronger the test suite, stronger is our confidence in the
product that we have built. One important benefit of software testing is that it facilitates the developers to make incremental changes to
source code and make sure that the current changes are not breaking the functionality of the previously existing code.

What is TDD

TDD stands for Test Driven Development. It is a software development process that relies on the repetition of a very short development
cycle: first the developer writes an (initially failing) automated test case that defines a desired improvement or new function, then
produces the minimum amount of code to pass that test, and finally refactors the new code to acceptable standards. The goal of TDD can
be viewed as specification and not validation. In other words, it’s one way to think through your requirements or design before your write
your functional code.

What is BDD

BDD stands for “Behaviour Driven Development”. It is a software development process that emerged from TDD. It includes the practice of
writing tests first, but focuses on tests which describe behavior, rather than tests which test a unit of implementation. This provides
software development and management teams with shared tools and a shared process to collaborate on software development. BDD is
largely facilitated through the use of a simple domain-specific language (DSL) using natural language constructs (e.g., English-like
sentences) that can express the behavior and the expected outcomes. Mocha and Cucumber testing libraries are built around the concepts
of BDD.

5.6.2 Testing workflow

(Ref: Ham Vocke, The Practical Test Pyramid)

5.6 Testing

- 182/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://martinfowler.com/articles/practical-test-pyramid.html

We follow a testing workflow in accordance with the test pyramid diagram given above, starting with isolated tests and moving towards
complete integration for any new feature changes. The different types of tests (in the order that they should be performed) are explained
below:

Unit Tests

Unit testing is a level of software testing where individual units/ components of a software are tested. The objective of Unit Testing is to
isolate a section of code and verify its correctness.

Ideally, each test case is independent from the others. Substitutes such as method stubs, mock objects, and spies can be used to assist
testing a module in isolation.

BENEFITS OF UNIT TESTING

Unit testing increases confidence in changing/ maintaining code. If good unit tests are written and if they are run every time any code is
changed, we will be able to promptly catch any defects introduced due to the change.

If codes are already made less interdependent to make unit testing possible, the unintended impact of changes to any code is less.

The cost, in terms of time, effort and money, of fixing a defect detected during unit testing is lesser in comparison to that of defects
detected at higher levels.

UNIT TESTS IN DTAAS

Each component DTaaS project uses unique technology stack. Thus the packages used for unit tests are different. Please check the test/
directory of a component to figure out the unit test packages used.

Integration tests

Integration testing is the phase in software testing in which individual software modules are combined and tested as a group. In DTaaS, we
use an integration server for software development as well as such tests.

The existing integration tests are done at the component level. There are no integration tests between the components. This task has been
postponed to future.

End-to-End tests

Testing any code changes through the end user interface of your software is essential to verify if your code has the desired effect for the
user. End-to-End tests in DTaaS a functional setup.

There are end-to-end tests in the DTaaS. This task has been postponed to future.

Feature Tests

A Software feature can be defined as the changes made in the system to add new functionality or modify the existing functionality. Each
feature is said to have a characteristics that is designed to be useful, intuitive and effective. It is important to test a new feature when it has
been added. We also need to make sure that it does not break the functionality of already existing features. Hence feature tests prove to be
useful.

The DTaaS project does not have any feature tests yet. Cucumber shall be used in future to implement feature tests.

5.6.3 References

Arthur Hicken, Shift left approach to software testing

Justin Searls and Kevin Buchanan, Contributing Tests wiki.

This wiki has good explanation of TDD and test doubles.

•

•

•

1.

2.

3.

5.6.3 References

- 183/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://martinfowler.com/articles/practical-test-pyramid.html#UnitTests
https://martinfowler.com/articles/practical-test-pyramid.html#IntegrationTests
https://github.com/INTO-CPS-Association/DTaaS/wiki/DTaaS-Integration-Server
https://martinfowler.com/articles/practical-test-pyramid.html#End-to-endTests
https://github.com/INTO-CPS-Association/DTaaS/blob/feature/distributed-demo/client/test/README.md
https://github.com/cucumber/cucumber-js
https://www.stickyminds.com/article/shift-left-approach-software-testing
https://github.com/testdouble/contributing-tests/wiki
https://github.com/testdouble/contributing-tests/wiki/Test-Driven-Development
https://github.com/testdouble/contributing-tests/wiki/Test-Double

5.7 Docker workflow for DTaaS

This readme will explain the building and use of different docker files for use in development and installation of the DTaaS software.

NOTE: A local docker installation with compose plugin is a pre-requisite for using docker workflows.

5.7.1 Folder Structure

There are two dockerfiles for building the containers:

client.dockerfile: Dockerfile for building the client application container.

libms.dockerfile: Dockerfile for building the library microservice container from source code.

libms.npm.dockerfile: Dockerfile for building the library microservice container from published npm package at npmjs.com. This
Dockerfile is only used during publishing. It is used neither in the development builds nor in Github actions.

There is a specific compose file for development:

The compose.dev.yml: file is the docker compose file for development environment.

5.7.2 Build and Publish Docker Images

The github workflows publish docker images of client website and libms to github and docker hub.

Developers

Use of docker images is handy for developers as well. It is suggested that developers build the required images locally on their computer
and use them for development purposes. The images can be built using

5.7.3 Running Docker Containers

Follow these steps to use the application with docker.

The DTaaS application requires multiple configuration files. The list of configuration files to be modified are given for each scenario.

Development Environment

This scenario is for software developers.

The configuration files to be updated are:

docker/.env : please see docker installation docs for help with updating this config file

docker/conf.dev : please see docker installation docs for help with updating this config file

client/config/local.js please see client config for help with updating this config file

servers/lib/config/libms.dev.yaml please see lib config for help with updating this config file

The docker commands need to be executed from this directory (docker). The relevant docker commands are:

Access the Application

You should access the application through the PORT mapped to the Traefik container. e.g. localhost

•

•

•

1 docker compose -f compose.dev.yml build

1.

2.

3.

4.

1
2

docker compose -f compose.dev.yml up -d #start the application
docker compose -f compose.dev.yml down #terminate the application

5.7 Docker workflow for DTaaS

- 184/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/orgs/INTO-CPS-Association/packages?repo_name=DTaaS
https://hub.docker.com/u/intocps

5.8 Publish NPM packages

The DTaaS software is developed as a monorepo with multiple npm packages.

5.8.1 Default npm registry

The default registry for npm packages is npmjs. The freely-accessible public packages are published to the npmjs registry. The publication
step is manual for the runner.

At least one version of runner package is published to this registry for each release of DTaaS.

The publication step for library microservice is automated via github actions.

5.8.2 Github npm registry

The Github actions of the project publish packages. The only limitation is that the users need an access token from Github.

5.8.3 Private Registry

Setup private npm registry

Since publishing to npmjs is irrevocable and public, developers are encouraged to setup their own private npm registry for local
development. A private npm registry will help with local publish and unpublish steps.

We recommend using verdaccio for this task. The following commands help you create a working private npm registry for development.

You can open http://localhost:4873 in your browser, login with the user credentials to see the packages published.

PUBLISH TO PRIVATE NPM REGISTRY

To publish a package to your local registry, do:

The package version in package.json gets updated as well. You can open http://localhost:4873 in your browser, login with the user
credentials to see the packages published. Please see verdaccio docs for more information.

If there is a need to unpublish a package, ex: @dtaas/runner@0.0.2 , do:

To install / uninstall this utility for all users, do:

1
2
3
4
5

npm login --registry="https://registry.npmjs.org"
cat ~/.npmrc #shows the auth token for the registry
//registry.npmjs.org/:_authToken=xxxxxxxxxx
yarn publish --registry="https://registry.npmjs.org" \
--no-git-tag-version --access public

1
2
3
4
5
6

docker run -d --name verdaccio -p 4873:4873 verdaccio/verdaccio
npm adduser --registry http://localhost:4873 #create a user on the verdaccio registry
npm set registry http://localhost:4873/
yarn config set registry "http://localhost:4873"
yarn login --registry "http://localhost:4873" #login with the credentials for yarn utility
npm login #login with the credentials for npm utility

1
2
3
4

yarn install
yarn build #the dist/ directory is needed for publishing step
yarn publish --no-git-tag-version #increments version in package.json, publishes to registry
yarn publish #increments version in package.json, publishes to registry and adds a git tag

1 npm unpublish --registry http://localhost:4873/ @dtaas/runner@0.0.2

1
2
3

sudo npm install --registry http://localhost:4873 -g @dtaas/runner
sudo npm list -g # should list @dtaas/runner in the packages
sudo npm remove --global @dtaas/runner

5.8 Publish NPM packages

- 185/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://registry.npmjs.org
https://github.com/orgs/INTO-CPS-Association/packages?repo_name=DTaaS
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://www.npmjs.com/
https://verdaccio.org
https://verdaccio.org/docs/installation/#basic-usage

 Use the packages

The packages available in private npm registry can be used like the regular npm packages installed from npmjs.

For example, to use @dtaas/runner@0.0.2 package, do:

1
2

sudo npm install --registry http://localhost:4873 -g @dtaas/runner
runner # launch the digital twin runner

5.8.3 Private Registry

- 186/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://www.npmjs.com/

5.9 DevOps Framework

5.9.1 Overview

Expectations From a DevOps Framework

The functional requirements of the system include the automation of pipelines and the management of Digital Twins (DTs) via Application
Programming Interface (API). Consequently, the framework was designed to facilitate the comprehensive automation of the DT lifecycle,
minimizing the necessity for manual intervention. The system must be capable of managing the dynamic configuration of pipelines,
utilizing variables that permit the customization of pipeline behavior according to the data provided by the user, such as the designation of
the DT.

Integration with GitLab is another fundamental requirement. The framework must be able to interact with GitLab to execute CI/CD
pipelines via API calls using Gitbeaker as a wrapper. Users must authenticate via GitLab's OAuth mechanism, and the system must
automatically manage the authentication tokens and trigger tokens needed to start pipelines. Additionally, the system must automatically
retrieve key information from the user's GitLab repository, such as the list of available DTs.

High Level Architecture

We use a DevOps framework to enable interaction with the DTs via APIs calls, so that users can start, monitor and manage their DTs via
the web application.

The architectural design of the DevOps framework was intended to facilitate the management of DTs. It is based on two key elements:

The GitLab CI/CD infrastructure, which employs a parent-child pipeline hierarchy. The objective of this infrastructure is to enable the
triggering of a pipeline of a specific DT by simply passing the necessary data as parameters, such as the name of the DT and the tag of
the runner that will execute the pipeline.

Classes implemented in the code, which utilize Gitbeaker to realize the APIs required for interaction with DTs.

The component diagram below illustrates how the infrastructure consists of three main classes: DigitalTwin , LibraryAsset , and
GitlabInstance .

•

•

5.9 DevOps Framework

- 187/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The distinction between the DigitalTwin and LibraryAsset classes was necessary to separate the full management of a DT from an asset
visualized through the library. The LibraryAsset class provides a significantly reduced set of functionality compared to the DigitalTwin ,
focusing only on asset visualization.

Intermediate classes were introduced to ensure a clear separation of file management responsibilities: DTAssets and LibraryManager . These
classes implement the necessary logic to mediate between a DigitalTwin or LibraryAsset and the FileHandler class. The FileHandler class has a
single responsibility: to make API calls to files via GitBeaker. This design allows for the separation of high-level logic from low-level file
operations.

The infrastructure requires that the DigitalTwin class and the LibraryAsset class include an instance of GitlabInstance . This composition
relationship emphasizes the dependency between these classes, where a DigitalTwin or a LibraryAsset instance cannot function
independently without a GitlabInstance . The GitlabInstance class provides the essential services required for interacting with GitLab,
including API integrations and pipeline management.

5.9.1 Overview

- 188/203 - Copyright © 2022 - 2024 The INTO-CPS Association

The GitlabInstance class serves as the interface to the realized CI/CD infrastructure. By utilizing the GitLab class imported from GitBeaker
and initialized as its attribute, GitlabInstance facilitates the execution of pipelines and other CI/CD-related tasks. This architecture ensures
that the infrastructure remains modular and adheres to the principles of single responsibility and clear dependency management.

Gitbeaker

GitBeaker is a client library for Node.js that enables users to interact with the GitLab API. In particular, gitbeaker/rest is a specific version
of the Gitbeaker package that allows users to submit requests to GitLab's REST API.

One of the most significant features of Gitbeaker is the provision of support for a range of authentication methods, including the use of
personal tokens and OAuth keys. Gitbeaker provides a range of predefined methods for requesting data from the various GitLab APIs,
eliminating the need for users to manually construct HTTP requests, thus greatly simplifying the integration process with GitLab.

It automatically handles errors in HTTP requests (and provides meaningful error messages that help diagnose and resolve problems) and
is fully compatible with all of GitLab's REST APIs.

Ref: Vanessa Scherma, Design and implementation of an integrated DevOps framework for Digital Twins as a Service software platform,
Master's Degree Thesis, Politecnico Di Torino, 2024.

5.9.1 Overview

- 189/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/jdalrymple/gitbeaker

5.9.2 GitLab CI/CD Infrastructure

Given that files in the Library are stored in a Git repository, the approach employed was that of GitLab's parent-child pipelines. In this
context, a parent pipeline initiates the execution of another pipeline within the same project, the latter of which is known as the child
pipeline. More about pipelines can be found in GitLab's documentation on CI/CD Pipelines.

CI/CD Pipelines

Continuous Integration (CI) and Continuous Deployment (CD) represent two key components of the DevOps methodology.

CI involves frequent integration of code changes into a common repository. Each integration triggers automated builds and tests that
permit the detection of issues at an early stage. This practice ensures that the changes made to the code are checked fast enough, reducing
the possibilities of integration problems and hence ensuring high-quality software.

CD automates the process of release, ensuring that code changes are automatically tested and prepared for deployment. Teams using CD
can deploy updates rapidly and reliably, improving the responsiveness and quality of software. Performed together, CI/CD automates the
whole delivery pipeline for software, increasing efficiency and reducing errors. They entirely eliminate, or significantly reduce, the
manual human input required for a code change to be moved from a commit to a production environment. The entire process of
compilation, testing (including unit, integration, and regression testing), deployment, and infrastructure provisioning is included.

CI/CD practices are explained in more detail in this article by GitLab.

A CI/CD pipeline is a series of automated processes that manage CI and CD of software. They are configured to run automatically, with no
need for manual intervention once activated.

GitLab is a single application for the entire DevOps lifecycle, which means it performs all of the basics required for CI/CD in one
environment. The documentation provided by GitLab was instrumental in enabling a comprehensive understanding of the CI/CD
pipelines.

Pipelines are composed of a number of essential components. Jobs delineate the specific tasks to be accomplished, while stages define the
sequence in which jobs are executed. In this way, stages ensure that each step takes place in the right order and make the pipeline more
efficient and consistent. In the event that all jobs within a stage are successfully completed, the pipeline will automatically proceed to the
subsequent stage. However, if any of the jobs fail, the flow is interrupted without proceeding.

When a pipeline is initiated, the jobs that have been defined within it are then distributed among the available runners.

GitLab runners are agents within the GitLab Runner application that execute the jobs in accordance with their configuration and the
available resources. They can be configured to operate on a variety of platforms, including virtual machines, containers, and physical
servers. They can also be managed locally or in a cloud environment.

We use this GitLab parent-child pipeline setup to trigger execution of digital twins stored in a user's GitLab repository.

The recommended practice is to modified these pipelines via the Digital Twins Preview Page.

Parent Pipeline

The parent pipeline was configured as a top-level element. There is a single stage called triggers , which is responsible for triggering other
child pipelines.

In the .gitlab-ci.yml file, triggers are managed for DTs inside the user repository. Each trigger is connected with one distinct DT and
becomes active when the corresponding value of the DTName variable is provided by the API call. The RunnerTag variable is used to specify a
custom runner tag that will execute each job in the DT's pipeline.

Note

5.9.2 GitLab CI/CD Infrastructure

- 190/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/ci/pipelines/
https://about.gitlab.com/topics/ci-cd/
https://docs.gitlab.com/ee/ci/pipelines/

Below is an explanation of the keywords used in the CI/CD pipeline configuration:

Image: Specifies the Docker image, such as fedora:41 , providing the environment for the pipeline execution.

Stages: Defines phases in the pipeline, such as triggers, organizing tasks sequentially.

Trigger: Initiates another pipeline or job, incorporating configurations from an external file.

Include: Imports configurations from another file for modular pipeline setups.

Rules: Sets conditions for job execution based on variables or states.

If: A condition within rules specifying when a job should run based on the value of a variable.

When: Specifies the timing of job execution, such as always .

Variables: Defines dynamic variables, like RunnerTag , used in the pipeline.

Here is an example of such a YAML file that registers a trigger for a DT named mass-spring-damper :

Digital Twin Structure

The digital_twins folder contains DTs that have been pre-built by one or more users. The intention is that they should be sufficiently
flexible to be reconfigured as required for specific use cases.

Let us look at an example of such a configuration. The dtaas/user1 repository on gitlab.com contains the digital_twins directory with a
hello_world example. Its file structure looks like this:

The lifecycle directory here contains four files - clean , create , execute and terminate , which are simple BASH scripts. These correspond to
stages in a digital twin's lifecycle.

•

•

•

•

•

•

•

•

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

image: fedora:41

stages:
- triggers

trigger_mass-spring-damper:
stage: triggers
trigger:
include: digital_twins/mass-spring-damper/.gitlab-ci.yml

rules:
- if: '$DTName == "mass-spring-damper"'
when: always

variables:
RunnerTag: $RunnerTag

1
2
3
4
5
6
7
8

hello_world/
├── lifecycle/
│ ├── clean
│ ├── create
│ ├── execute
│ └── terminate
├── .gitlab-ci.yml
└── description.md

5.9.2 GitLab CI/CD Infrastructure

- 191/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://gitlab.com/dtaas/user1
https://www.gnu.org/software/bash/

Child Pipelines

To automate the lifecycle of DT, a child pipeline has been incorporated into its corresponding folder. Regardless of the image provided in
the parent pipeline, each child pipeline will use its own specified image specified in its YAML configuration or Ruby's default image.

The following are the explanations of the keywords used within the CI/CD child pipeline based on GitLab's CI/CD YAML syntax reference:

Stage It defines the steps that happen in a pipeline sequentially, for example, create, execute and clean, to make sure that tasks occur in a
specific order.

Script It lists commands to be run at each step; for example, changing directories, modifying permissions, or running lifecycle scripts.

Tags It specifies which runner should run the jobs, thereby providing an additional control over where and how the jobs are run.

1.

2.

3.

5.9.2 GitLab CI/CD Infrastructure

- 192/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/ci/yaml/

With the DT mass-spring-damper serving as a point of reference, the stages in question are designed to facilitate the creation, execution, and
termination of the DT simulation, as well as the cleaning and restoration of the environment to ensure its readiness for future executions.
Here is an example of a configuration that defines create , execute and clean as part of the child pipeline:

Ref: Vanessa Scherma, Design and implementation of an integrated DevOps framework for Digital Twins as a Service software platform,
Master's Degree Thesis, Politecnico Di Torino, 2024.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

image: ubuntu:20.04

stages:
- create
- execute
- clean

create_mass-spring-damper:
stage: create
script:

- cd digital_twins/mass-spring-damper
- chmod +x lifecycle/create
- lifecycle/create

tags:
- $RunnerTag

execute_mass-spring-damper:
stage: execute
script:

- cd digital_twins/mass-spring-damper
- chmod +x lifecycle/execute
- lifecycle/execute

tags:
- $RunnerTag

clean_mass-spring-damper:
stage: clean
script:

- cd digital_twins/mass-spring-damper
- chmod +x lifecycle/terminate
- chmod +x lifecycle/clean
- lifecycle/terminate

tags:
- $RunnerTag

5.9.2 GitLab CI/CD Infrastructure

- 193/203 - Copyright © 2022 - 2024 The INTO-CPS Association

5.9.3 API Calls

A GitLab DevOps pipeline can be triggered via an API call using a pipeline trigger token which is created on the GitLab instance, with the
following values:

<trigger_token> : The user GitLab trigger token.

<digital_twin_name> : The name of the DT (e.g. mass-spring-damper).

<runner_tag> : The specific tag of the GitLab runner that the user wants to use.

<project_id> : The ID of the GitLab project, displayed in the project overview page.

The example given below sets the DTName variable to the desired DT name, the RunnerTag variable to the specified GitLab Runner tag, and
ensures the call will be executed in the main branch:

Ref: Vanessa Scherma, Design and implementation of an integrated DevOps framework for Digital Twins as a Service software platform,
Master's Degree Thesis, Politecnico Di Torino, 2024.

1.

2.

3.

4.

1
2
3
4
5
6

curl --request POST \
--form "token=<trigger_token>" \
--form ref=main \
--form "variables[DTName]=<digital_twin_name>" \
--form "variables[RunnerTag]=<runner_tag>" \
"https://maestro.cps.digit.au.dk/gitlab/api/v4/projects/<project_id>/trigger/pipeline"

5.9.3 API Calls

- 194/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://docs.gitlab.com/ee/ci/triggers/

5.9.4 Implemented Classes

In order to facilitate the management of the lifecycle of DTs via the web application interfaces, it was necessary to develop specific code
within the project client. The code was designed to facilitate efficient API calls through the use of Gitbeaker as a wrapper, as this approach
simplifies interactions with GitLab’s REST API and reduces the complexity of the project code.

The APIs have been integrated into the front-end by wiring up API endpoints to front-end components, ensuring a seamless data flow. Unit
and integration testing was done to ensure the coverage of all functional requirements and solve all problems regarding data consistency,
performance, or user experience.

Given below is our implementation of these classes in TypeScript:

GitlabInstance

The GitlabInstance class was created in order to manage the APIs and information related to the GitLab profile, the project, and the user-
specific data stored in their account.

The username and the token required to instantiate the Gitbeaker Gitlab component, which is required for making the API calls, are
retrieved from the session storage, taking the access_token of the user already logged into the DTaaS application.

The initialisation of the GitlabInstance object is concluded with the execution of the init() method, which enables the retrieval and storage
of the projectId and triggerToken attributes. The projectId is a unique identifier for projects in GitLab and it is essential for subsequent API
calls. For example, it is passed to the method that retrieves a trigger token, which is used to trigger CI/CD pipelines in GitLab.

The objective of the getDTSubfolders method was to retrieve the names and corresponding descriptions of the DTs of the user, so that these
could be shown at the front-end interface. This approach would obviate the user from having to input the name of a DT; hence, saving the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

class GitlabInstance {
async init();
async getProjectId();
async getTriggerToken(projectId: number);
async getDTSubfolders(projectId: number);
async getLibrarySubfolders(
projectId: number,
type: string,
isPrivate: boolean,

);
executionLogs();
async getPipelineJobs(
projectId: number,
pipelineId: number,

);
async getJobTrace(projectId: number, jobId: number);
async getPipelineStatus(
projectId: number,
pipelineId: number,

);
}

class DigitalTwin {
async getDescription();
async getFullDescription();
private async triggerPipeline();
async execute();
async stop(projectId: number, pipeline: string);
async create(
files: FileState[],
cartAssets: LibraryAsset[],
libraryFiles: LibraryConfigFile[],

);
async delete();
async getDescriptionFiles();
async getConfigFiles();
async getLifecycleFiles();
async prepareAllAssetFiles(
cartAssets: LibraryAsset[],
libraryFiles: LibraryConfigFile[],

);
async getAssetFiles();

}

class LibraryAsset {
async getDescription();
async getFullDescription();
async getConfigFiles();

}

5.9.4 Implemented Classes

- 195/203 - Copyright © 2022 - 2024 The INTO-CPS Association

user from possible error and inefficiencies arising from manual input. The user interface makes it easier for the user to deal with DTs by
automatizing their selection and manages them more accurately. This implementation also eliminates the necessity for manual input from
users for the access token and the username, which are automatically provided via the GitLab OAuth login.

Furthermore, logs maintained in the GitlabInstance class improve awareness and transparency over the operations conducted. The final
three methods are employed in conjunction to oversee the execution of a DT. In particular, individual logs are saved for each job in the
pipeline, and the status of the latter is monitored so that, once the entire pipeline is complete, the results can be displayed in detail within
the user interface. In this way, all statuses of each operation are logged for better debugging and performance analysis, including possible
errors. Having trace logs exposed to the user means troubleshooting will be more effective and insight into execution and management of
DTs will be gained, improving system reliability and user confidence.

DigitalTwin

The DigitalTwin class was created in order to manage the APIs and information related to a specific DT.

The creation of a DigitalTwin object requires a pre-existing GitlabInstance to be associated with the object. It was determined that
matching a different GitlabInstance for each DigitalTwin would be the optimal approach to ensure the maintenance of independence
between the various DTs. The api attribute of GitlabInstance facilitates the execution of Gitbeaker APIs pertinent to the DT.

The class allows a pipeline to be started and stopped, thus giving the user full control of the execution. The execute() method uses the
previous methods internally. This approach ensures that there are no errors due to missing design information during the execution of the
pipeline. Responsibilities have been divided into smaller methods in order to make the code more modular, facilitating debugging and
testing. In both execute() and stop(), the status of operations executed on the DT is monitored, keeping track of them via the logs attribute
of GitlabInstance. Errors are identified and tracked, providing a complete view and the ability to monitor performance.

The descriptionFiles , lifecycleFiles and configFiles attributes are used to keep track of the files within the corresponding GitLab folder of
the DT, thus enabling the read and modify features.
The create() method enables the creation of a DT and saves all its files in the user’s corresponding GitLab folder. Additionally, if the DT is
configured as common, it is also added to GitLab’s shared folder, making it part of the Library and accessible to other users.

Similarly, the delete() method removes a DT from GitLab. If the DT was part of the Library, it is also removed from the shared folder.

A crucial aspect of these two methods is their integration with the DevOps infrastructure. When a DT is created or deleted, the .gitlab-
ci.yml file of the parent pipeline is updated to add or remove the trigger_DTName section associated with the DT. This ensures that a user-
created DT can be executed via the web interface without requiring manual updates to pipeline configuration files on GitLab. Instead,
these files are automatically updated, providing an effortless user experience and maintaining alignment with the infrastructure.

LibraryAsset

The LibraryAsset class was created in order to manage the APIs and information related to a specific library asset.

It is similar to the DigitalTwin class, but contains only the methods required to display files. This focused design reflects its limited scope
and ensures simplicity and clarity for use cases involving the library.

Ref: Vanessa Scherma, Design and implementation of an integrated DevOps framework for Digital Twins as a Service software platform,
Master's Degree Thesis, Politecnico Di Torino, 2024.

5.9.4 Implemented Classes

- 196/203 - Copyright © 2022 - 2024 The INTO-CPS Association

6. Few issues in the Software

If you find a bug, please open an issue

6.1 Third-Party Software

The explanation given below corresponds to the bugs you may face from third party software included in DTaaS. Known issues are listed
below.

6.1.1 ML Workspace

the docker container might down a bit after two weeks. The only known solution is to restart the docker container. You don't need to
restart the complete DTaaS platform, restart of the docker container of ml-workspace is sufficient.

the terminal tool doesn't seem to have the ability to refresh itself. If there is an issue, the only solution is to close and reopen the
terminal from "open tools" drop down of notebook

terminal app does not show at all after some time: terminal always comes if it is open from drop-down menu of Jupyter Notebook, but
not as a direct link.

6.2 Gitlab

The gilab oauth authorization service does not have a way to sign out of a third-party application. Even if you sign out of DTaaS, the
gitlab still shows user as signed in. The next time you click on the sign in button on the DTaaS page, user is not shown the login page.
Instead user is directly taken to the Library page. So close the brower window after you are done. Another way to overcome this
limitation is to open your gitlab instance (https://gitlab.foo.com) and signout from there. Thus user needs to sign out of two places,
namely DTaaS and gitlab, in order to completely exit the DTaaS application.

•

•

•

•

6. Few issues in the Software

- 197/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/issues/new

7. Contributors

code contributors

7.1 Users

Cláudio Ângelo Gonçalves Gomes, Dmitri Tcherniak, Elif Ecem Bas, Farshid Naseri, Giuseppe Abbiati, Hannes Iven, Hao Feng, Henrik
Ejersbo, Lars Vosteen, Lei Zhao, Mirgita Frasheri, Morten Haahr Kristensen, Neena Goveas, Tanusree Roy, Santiago Gil Arboleda, Swarup
Mahato, Valdemar Tang

7.2 Example Contributors

7.3 Documentation

Talasila, P., Gomes, C., Mikkelsen, P. H., Arboleda, S. G., Kamburjan, E., & Larsen, P. G. (2023). Digital Twin as a Service (DTaaS): A Platform for
Digital Twin Developers and Users arXiv preprint arXiv:2305.07244.

Astitva Sehgal for developer and example documentation.

Tanusree Roy and Farshid Naseri for asking interesting questions that ended up in FAQs.

Example Name Contributors

Mass Spring Damper Prasad Talasila

Water Tank Fault Injection Henrik Ejersbo and Mirgita Frasheri

Water Tank Model Swap Henrik Ejersbo and Mirgita Frasheri

Desktop Robotti with RabbitMQ Mirgita Frasheri

Water Treatment Plant and OPC-UA Lucia Royo and Alejandro Labarias

Three Water Tanks with DT Manager Framework Santiago Gil Arboleda

Flex-Cell with Two Industrial Robots Santiago Gil Arboleda

Incubator Morten Haahr Kristensen

Firefighters in Emergency Environments Lars Vosteen and Hannes Iven

Mass Spring Damper with NuRV Runtime Monitor Alberto Bonizzi

Incubator with NuRV Runtime Monitor Alberto Bonizzi and Morten Haahr Kristensen

Incubator with NuRV Runtime Monitor Service Valdemar Tang

Water Tank Fault Injection with NuRV Runtime Monitor Alberto Bonizzi

Incubator Co-Simulation with NuRV Runtime Monitor FMU Morten Haahr Kristensen

Incubator with NuRV Runtime Monitor FMU as Service Valdemar Tang and Morten Haahr Kristensen

Incubator with NuRV Runtime Monitor as Service Morten Haahr Kristensen and Valdemar Tang

1.

2.

3.

7. Contributors

- 198/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/graphs/contributors
https://arxiv.org/abs/2305.07244

8. License

8.1 License

--- Start of Definition of INTO-CPS Association Public License ---

/*

This file is part of the INTO-CPS Association.

Copyright (c) 2017-CurrentYear, INTO-CPS Association (ICA),

c/o Peter Gorm Larsen, Aarhus University, Department of Engineering,

Finlandsgade 22, 8200 Aarhus N, Denmark.

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR

THIS INTO-CPS ASSOCIATION PUBLIC LICENSE (ICAPL) VERSION 1.0.

ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM CONSTITUTES

RECIPIENT'S ACCEPTANCE OF THE INTO-CPS ASSOCIATION PUBLIC LICENSE OR

THE GPL VERSION 3, ACCORDING TO RECIPIENTS CHOICE.

The INTO-CPS tool suite software and the INTO-CPS Association

Public License (ICAPL) are obtained from the INTO-CPS Association, either

from the above address, from the URLs: http://www.into-cps.org or

in the INTO-CPS tool suite distribution.

GNU version 3 is obtained from:

http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET FORTH

IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF

THE INTO-CPS ASSOCIATION PUBLIC LICENSE.

See the full ICAPL conditions for more details.

*/

--- End of INTO-CPS Association Public License Header ---

The ICAPL is a public license for the INTO-CPS tool suite with three modes/alternatives (GPL, ICA-Internal-EPL, ICA-External-EPL) for use
and redistribution, in source and/or binary/object-code form:

GPL. Any party (member or non-member of the INTO-CPS Association) may use and redistribute INTO-CPS tool suite under GPL version
3.

Silver Level members of the INTO-CPS Association may also use and redistribute the INTO-CPS tool suite under ICA-Internal-EPL
conditions.

Gold Level members of the INTO-CPS Association may also use and redistribute The INTO-CPS tool suite under ICA-Internal-EPL or ICA-
External-EPL conditions.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

8. License

- 199/203 - Copyright © 2022 - 2024 The INTO-CPS Association

http://www.into-cps.org
http://www.gnu.org/copyleft/gpl.html

Definitions of the INTO-CPS Association Public license modes:

GPL = GPL version 3.

ICA-Internal-EPL = These INTO-CPA Association Public license conditions together with Internally restricted EPL, i.e., EPL version 1.0
with the Additional Condition that use and redistribution by a member of the INTO-CPS Association is only allowed within the INTO-CPS
Association member's own organization (i.e., its own legal entity), or for a member of the INTO-CPS Association paying a membership
fee corresponding to the size of the organization including all its affiliates, use and redistribution is allowed within/between its
affiliates.

ICA-External-EPL = These INTO-CPA Association Public license conditions together with Externally restricted EPL, i.e., EPL version 1.0
with the Additional Condition that use and redistribution by a member of the INTO-CPS Association, or by a Licensed Third Party
Distributor having a redistribution agreement with that member, to parties external to the INTO-CPS Association member’s own
organization (i.e., its own legal entity) is only allowed in binary/object-code form, except the case of redistribution to other members the
INTO-CPS Association to which source is also allowed to be distributed.

[This has the consequence that an external party who wishes to use the INTO-CPS Association in source form together with its own
proprietary software in all cases must be a member of the INTO-CPS Association].

In all cases of usage and redistribution by recipients, the following conditions also apply:

a) Redistributions of source code must retain the above copyright notice, all definitions, and conditions. It is sufficient if the ICAPL Header
is present in each source file, if the full ICAPL is available in a prominent and easily located place in the redistribution.

b) Redistributions in binary/object-code form must reproduce the above copyright notice, all definitions, and conditions. It is sufficient if
the ICAPL Header and the location in the redistribution of the full ICAPL are present in the documentation and/or other materials
provided with the redistribution, if the full ICAPL is available in a prominent and easily located place in the redistribution.

c) A recipient must clearly indicate its chosen usage mode of ICAPL, in accompanying documentation and in a text file ICA-USAGE-
MODE.txt, provided with the distribution.

d) Contributor(s) making a Contribution to the INTO-CPS Association thereby also makes a Transfer of Contribution Copyright. In return,
upon the effective date of the transfer, ICA grants the Contributor(s) a Contribution License of the Contribution. ICA has the right to accept
or refuse Contributions.

Definitions:

"Subsidiary license conditions" means:

The additional license conditions depending on the by the recipient chosen mode of ICAPL, defined by GPL version 3.0 for GPL, and by EPL
for ICA-Internal-EPL and ICA-External-EPL.

"ICAPL" means:

INTO-CPS Association Public License version 1.0, i.e., the license defined here (the text between "--- Start of Definition of INTO-CPS
Association Public License ---" and "--- End of Definition of INTO-CPS Association Public License ---", or later versions thereof.

"ICAPL Header" means:

INTO-CPS Association Public License Header version 1.2, i.e., the text between "--- Start of Definition of INTO-CPS Association Public
License ---" and "--- End of INTO-CPS Association Public License Header ---, or later versions thereof.

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation distributed under ICAPL, and

b) in the case of each subsequent Contributor: i) changes to the INTO-CPS tool suite, and ii) additions to the INTO-CPS tool suite;

where such changes and/or additions to the INTO-CPS tool suite originate from and are distributed by that particular Contributor. A
Contribution 'originates' from a Contributor if it was added to the INTO-CPS tool suite by such Contributor itself or anyone acting on such
Contributor's behalf.

For Contributors licensing the INTO-CPS tool suite under ICA-Internal-EPL or ICA-External-EPL conditions, the following conditions also
hold:

•

•

•

8.1 License

- 200/203 - Copyright © 2022 - 2024 The INTO-CPS Association

Contributions do not include additions to the distributed Program which: (i) are separate modules of software distributed in conjunction
with the INTO-CPS tool suite under their own license agreement, (ii) are separate modules which are not derivative works of the INTO-CPS
tool suite, and (iii) are separate modules of software distributed in conjunction with the INTO-CPS tool suite under their own license
agreement where these separate modules are merged with (weaved together with) modules of The INTO-CPS tool suite to form new
modules that are distributed as object code or source code under their own license agreement, as allowed under the Additional Condition
of internal distribution according to ICA-Internal-EPL and/or Additional Condition for external distribution according to ICA-External-EPL.

"Transfer of Contribution Copyright" means that the Contributors of a Contribution transfer the ownership and the copyright of the
Contribution to the INTO-CPS Association, the INTO-CPS Association Copyright owner, for inclusion in the INTO-CPS tool suite. The transfer
takes place upon the effective date when the Contribution is made available on the INTO-CPS Association web site under ICAPL, by such
Contributors themselves or anyone acting on such Contributors' behalf. The transfer is free of charge. If the Contributors or the INTO-CPS
Association so wish, an optional Copyright transfer agreement can be signed between the INTO-CPS Association and the Contributors.

"Contribution License" means a license from the INTO-CPS Association to the Contributors of the Contribution, effective on the date of the
Transfer of Contribution Copyright, where the INTO-CPS Association grants the Contributors a non-exclusive, world-wide, transferable,
free of charge, perpetual license, including sublicensing rights, to use, have used, modify, have modified, reproduce and or have
reproduced the contributed material, for business and other purposes, including but not limited to evaluation, development, testing,
integration and merging with other software and distribution. The warranty and liability disclaimers of ICAPL apply to this license.

"Contributor" means any person or entity that distributes (part of) the INTO-CPS tool chain.

"The Program" means the Contributions distributed in accordance with ICAPL.

"The INTO-CPS tool chain" means the Contributions distributed in accordance with ICAPL.

"Recipient" means anyone who receives the INTO-CPS tool chain under ICAPL, including all Contributors.

"Licensed Third Party Distributor" means a reseller/distributor having signed a redistribution/resale agreement in accordance with ICAPL
and the INTO-CPS Association Bylaws, with a Gold Level organizational member which is not an Affiliate of the reseller/distributor, for
distributing a product containing part(s) of the INTO-CPS tool suite. The Licensed Third Party Distributor shall only be allowed further
redistribution to other resellers if the Gold Level member is granting such a right to it in the redistribution/resale agreement between the
Gold Level member and the Licensed Third Party Distributor.

"Affiliate" shall mean any legal entity, directly or indirectly, through one or more intermediaries, controlling or controlled by or under
common control with any other legal entity, as the case may be. For purposes of this definition, the term "control" (including the terms
"controlling," "controlled by" and "under common control with") means the possession, direct or indirect, of the power to direct or cause
the direction of the management and policies of a legal entity, whether through the ownership of voting securities, by contract or
otherwise.

NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF ICAPL, THE INTO-CPS
ASSOCIATION IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED
INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of using and distributing
the INTO-CPS tool suite and assumes all risks associated with its exercise of rights under ICAPL , including but not limited to the risks and
costs of program errors, compliance with applicable laws, damage to or loss of data, programs or equipment, and unavailability or
interruption of operations.

DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF ICAPL, NEITHER RECIPIENT
NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OR DISTRIBUTION OF THE INTO-CPS TOOL SUITE OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

A Contributor licensing the INTO-CPS tool suite under ICA-Internal-EPL or ICA-External-EPL may choose to distribute (parts of) the INTO-
CPS tool suite in object code form under its own license agreement, provided that:

8.1 License

- 201/203 - Copyright © 2022 - 2024 The INTO-CPS Association

a) it complies with the terms and conditions of ICAPL; or for the case of redistribution of the INTO-CPS tool suite together with proprietary
code it is a dual license where the INTO-CPS tool suite parts are distributed under ICAPL compatible conditions and the proprietary code is
distributed under proprietary license conditions; and

b) its license agreement: i) effectively disclaims on behalf of all Contributors all warranties and conditions, express and implied, including
warranties or conditions of title and non-infringement, and implied warranties or conditions of merchantability and fitness for a
particular purpose; ii) effectively excludes on behalf of all Contributors all liability for damages, including direct, indirect, special,
incidental and consequential damages, such as lost profits; iii) states that any provisions which differ from ICAPL are offered by that
Contributor alone and not by any other party; and iv) states from where the source code for the INTO-CPS tool suite is available, and
informs licensees how to obtain it in a reasonable manner on or through a medium customarily used for software exchange.

When the INTO-CPS tool suite is made available in source code form:

a) it must be made available under ICAPL; and

b) a copy of ICAPL must be included with each copy of the INTO-CPS tool suite.

c) a copy of the subsidiary license associated with the selected mode of ICAPL must be included with each copy of the INTO-CPS tool suite.

Contributors may not remove or alter any copyright notices contained within The INTO-CPS tool suite.

If there is a conflict between ICAPL and the subsidiary license conditions, ICAPL has priority.

This Agreement is governed by the laws of Denmark. The place of jurisdiction for all disagreements related to this Agreement, is Aarhus,
Denmark.

The EPL 1.0 license definition has been obtained from: http://www.eclipse.org/legal/epl-v10.html. It is also reproduced in the INTO-CPS
distribution.

The GPL Version 3 license definition has been obtained from http://www.gnu.org/copyleft/gpl.html. It is also reproduced in the INTO-CPS
distribution.

--- End of Definition of INTO-CPS Association Public License ---

8.1 License

- 202/203 - Copyright © 2022 - 2024 The INTO-CPS Association

http://www.eclipse.org/legal/epl-v10.html
http://www.gnu.org/copyleft/gpl.html

8.2 Third Party Software

The DTaaS software platform uses many third-party software. These software components have their own licenses.

8.2.1 User Installations

The list of software included with DTaaS installation scripts are:

8.2.2 Development Environments

Inaddition to all the software included in user installations, the DTaaS development environments may use the following additional
software packages.

8.2.3 Package Dependencies

There are specific software packages included in the development of client, library microservice and runner microservice. These packages
can be seen in the package.json file of the matching directories.

The plugins of material for mkdocs might have their own licenses. The list of plugins used are in requirements.txt file.

Software Package Usage License

docker v24.0 mandatory Apache 2.0

ml-workspace-minimal v0.13 mandatory Apache 2.0

nodejs v20.10 mandatory Custom - Modified MIT

npm v10.2 mandatory Artistic License 2.0

serve mandatory MIT

Træfik v2.10 mandatory MIT

yarn v1.22 mandatory BSD 2-Clause

eclipse-mosquitto v2 optional Eclipse Public License-2.0

gitlab-ce v16.4 optional MIT

Grafana v10.1 optional GNU Affero General Public (AGPL) License v3.0

InfluxDB v2.7 optional Apache2, MIT

Mongodb v7.0 optional AGPL License and Server Side Public License (SSPL) v1

Tabbitmq v3-management optional Mozilla Public License

Telegraf v1.28 optional MIT

Software Package Usage License

Material for mkdocs mandatory MIT

Docker-compose v2.20 optional Apache 2.0

Jupyter Lab optional 3-Clause BSD

Microk8s v1.27 optional Apache 2.0

Openssl optional Custom License

8.2 Third Party Software

- 203/203 - Copyright © 2022 - 2024 The INTO-CPS Association

https://github.com/moby/moby
https://github.com/ml-tooling/ml-workspace
https://nodejs.org/en
https://github.com/nodejs/node/blob/main/LICENSE
https://npmjs.com
https://github.com/vercel/serve
https://github.com/traefik/traefik
https://yarnpkg.com/
https://github.com/eclipse/mosquitto
https://docs.gitlab.com/
https://github.com/grafana/grafana
https://github.com/influxdata/influxdb
https://github.com/mongodb/mongo
https://github.com/rabbitmq/rabbitmq-server
https://github.com/influxdata/telegraf
https://github.com/squidfunk/mkdocs-material
https://github.com/docker/compose
https://github.com/jupyterlab/jupyterlab
https://github.com/canonical/microk8s
https://www.openssl.org

	Digital Twin as a Service (DTaaS)
	1. What is DTaaS?
	1.1 License

	2. User
	2.1 DTaaS for Users
	2.1.1 User Guide
	2.1.2 Motivation
	2.1.3 Existing Approaches
	2.1.4 Our Approach

	2.2 Overview
	2.2.1 Advantages
	2.2.2 Software Features

	2.3 DTaaS Website Screenshots
	2.3.1 Visit the DTaaS Application
	2.3.2 Redirected to Authorization Provider
	2.3.3 Permit DTaaS Server to Use Gitlab
	2.3.4 Permit DTaaS Website to Use Gitlab
	2.3.5 Overview of menu items
	2.3.6 Library tabs and their help text
	2.3.7 Digital Twins page
	2.3.8 Workbench
	2.3.9 Digital Twins Preview Page
	2.3.10 Finally logout

	2.4 Reusable Assets
	2.4.1 Reusable Assets
	Kinds of Reusable Assets
	Data
	Models
	Tools
	Functions
	Digital Twins

	File System Structure
	Upload Assets

	2.4.2 Library Microservice
	Application Programming Interface (API)
	HTTP protocol
	GraphQL protocol
	Provide list of contents for a directory
	GraphQL query for list of contents
	GraphQL response for list of contents
	HTTP request for list of contents
	HTTP response for list of contents

	Fetch a file from the available files
	GraphQL query for fetch a file
	GraphQL response for fetch a file
	HTTP request for fetch a file
	HTTP response for fetch a file

	2.5 Digital Twins
	2.5.1 Create a Digital Twin
	Example

	2.5.2 Digital Twin Lifecycle
	Lifecycle Phases
	Example Lifecycle Scripts

	2.5.3 DevOps Preview
	Digital Twin File Structure in Gitlab
	Digital Twin Structure

	Digital Twins and DevOps
	Manage Tab
	Execute Tab

	2.6 Working with Gitlab
	2.6.1 Preparation
	2.6.2 Git commands
	2.6.3 Library Assets
	2.6.4 Next Steps

	2.7 Runner
	2.7.1 Install
	NPM Registry
	Github Registry

	2.7.2 Configure
	2.7.3 Create Commands
	2.7.4 Use
	Application Programming Interface (API)
	POST Request to /
	GET Request to /
	GET Request to /history

	2.8 Examples
	2.8.1 DTaaS Examples
	Copy Examples
	Example List

	2.8.2 Mass Spring Damper
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Examine the results

	Terminate phase

	References

	2.8.3 Water Tank Fault Injection
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.4 Water Tank Model Swap
	Overview
	Example Structure
	Configuration of assets
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.5 Desktop Robotti with RabbitMQ
	Overview
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Examine the results

	Terminate phase

	References

	2.8.6 Waste Water Plant with OPC-UA
	Introduction
	Physical Twin Overview
	Digital Twin Overview
	Digital Twin Configuration
	Input Data Variables
	DT Config

	Lifecycle Phases
	Run the example
	Install
	Create
	Execute
	Clean

	References
	Acknowledgements

	2.8.7 Three-Tank System Digital Twin
	Overview
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Terminate
	Clean

	Examining the results
	References

	2.8.8 Flex Cell Digital Twin with Two Industrial Robots
	Overview
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Prepare
	Execute
	Save
	Analyze
	Terminate
	Clean

	Examining the results
	References

	2.8.9 Incubator Digital Twin
	Overview
	Digital Twin Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Clean

	Examining the results
	References

	2.8.10 Firefighter Mission in a Burning Building
	Physical Twin Overview
	Digital Twin Overview
	Quick Check
	Digital Twin Configuration

	Lifecycle Phases
	Run the example
	Install
	Create
	Exceute
	Examine the Results
	Terminate
	Clean

	2.8.11 Mass Spring Damper with NuRV Runtime Monitor
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor
	Overview
	Simulated scenario
	Example structure
	Digital Twin configuration
	Lifecycle phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.14 Incubator Digital Twin with NuRV monitoring service
	Overview
	Simulated scenario
	Example structure
	Digital Twin configuration
	Lifecycle phases
	Running the example
	References

	2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service
	Overview
	Simulated scenario
	Example structure
	Digital Twin configuration
	Lifecycle phases
	Running the example
	References

	3. Admin
	3.1 Install
	3.1.1 Overview
	Install
	Administer

	3.1.2 Installation Steps
	Complete DTaaS Application
	Setup Authorization
	Configure Components
	Install

	Independent Packages

	3.1.3 Requirements
	OAuth Provider
	Domain name

	3.1.4 Authorization
	OAuth for React Client
	OAuth for Traefik Gateway
	Development Environment
	Configure Authorization Rules for Traefik Forward-Auth
	Public Path Without Authorization
	Common to All Users
	Selective Access

	User management
	Limitation

	3.1.5 Configuration
	Configure Client Website
	Multiple DTaaS applications

	Configure Library Microservice

	3.1.6 Docker
	Install DTaaS on localhost
	Design
	Requirements
	Clone Codebase
	Configuration
	Docker Compose
	Create User Workspace

	Run
	Use
	Limitations
	References

	Install DTaaS on localhost with Gitlab Integration
	Design
	Requirements
	Clone Codebase
	Configure and Run
	Create User Workspace
	Obtain TLS / HTTPS Certificate
	Add TLS Certificates to Traefik
	Configure Docker Compose
	Start DTaaS to Integrate Gitlab
	Start Gitlab
	Register OAuth2 Application
	Update Client Website Configuration
	Restart DTaaS Client Website

	Use
	Limitations
	Docker Help
	References

	Install DTaaS on a Production Server
	Design
	Requirements
	Docker with Compose Plugin
	Domain name
	TLS / HTTPS Certificate (Optional)
	OAuth Provider
	User Accounts
	OAuth2 Application Registration

	Clone Codebase
	Configuration
	Docker Compose
	Website Client
	Create User Workspace
	Configure Authorization Rules for Backend Authorization

	Access Rights Over Files
	Add TLS Certificates (Optional)

	Run
	Over HTTP
	Over HTTPS

	Use
	Adding a new user

	References

	3.1.7 Vagrant
	DTaaS Vagrant Box
	References

	DTaaS on Single Vagrant Machine
	Create Base Vagrant Box
	Target Installation Setup
	Configure Server Settings
	Installation Steps
	References

	DTaaS on Two Vagrant Machines
	Create Base Vagrant Box
	Target Installation Setup
	Configure Server Settings
	Installation Steps
	Launch DTaaS Platform Default Services
	Install DTaaS Application

	References

	3.1.8 Third-party Services
	Pre-requisites
	Configure and Install
	Use

	3.2 Integrated Gitlab
	3.2.1 Install Gitlab
	Configure and Install
	Run
	Post-install Configuration
	Create Users

	Pending Tasks

	3.2.2 GitLab Integration Guide
	Integration Steps
	1. Set up the DTaaS server over HTTPS
	2. Set up the GitLab Instance
	3. Create OAuth Tokens in GitLab
	4. Use Valid Oauth Application Tokens

	Restart Services
	Localhost Installation
	Production Server Installation

	Post Setup Usage

	3.2.3 GitLab Runner Integration
	Prerequisites
	Runner Scopes
	Obtaining A Registration Token
	Configuring the Runner
	Start the GitLab Runner
	Pipeline Trigger Token

	3.3 DTaaS Command Line Interface
	3.3.1 Prerequisite
	3.3.2 Installation
	3.3.3 Usage
	Setup
	Select Template
	Add users
	Caveats

	Delete users
	Additional Points to Remember

	3.4 Independent Packages
	3.4.1 Independent Packages
	3.4.2 Library Microservice
	Host Library Microservice
	Setup the File System
	Outside DTaaS
	Inside DTaaS

	Install
	npmjs
	Github

	Use
	Service Endpoints

	Host Library Microservice
	Setup the File System
	Outside DTaaS
	Inside DTaaS

	Use
	Service Endpoints

	3.5 Guides
	3.5.1 Install DTaaS on localhost (GUI)
	Design
	Requirements
	Clone Codebase
	Starting Portainer
	Configuration
	Create User Workspace
	Creating the Portainer Stack

	Use
	Limitations
	References

	3.5.2 Add User
	3.5.3 Remove User
	Caveat

	3.5.4 Add other services
	3.5.5 Link services to local ports
	3.5.6 Make Common Assets Read Only
	Why
	How

	4. Frequently Asked Questions
	4.1 Abreviations
	4.2 General Questions
	4.3 Digital Twin Assets
	4.4 Digital Twin Models
	4.5 Communication Between Physical Twin and Digital Twin
	4.6 Data Management
	4.7 Platform Native Services on DTaaS Platform
	4.8 Comparison with other DT Platforms
	4.9 GDPR Concerns

	5. Developer
	5.1 Contributors Guide
	5.1.1 Project Goals
	5.1.2 Development Environment
	DevContainers
	Ubuntu/Linux
	Windows
	Pre-install Nodejs and Ruby Software
	Run Scripts

	5.1.3 Development Workflow
	5.1.4 Code Quality
	Code Climate
	Codecov
	Github Actions

	5.2 Contributor Covenant Code of Conduct
	5.2.1 Our Pledge
	5.2.2 Our Standards
	5.2.3 Enforcement Responsibilities
	5.2.4 Scope
	5.2.5 Enforcement
	5.2.6 Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	5.2.7 Attribution

	5.3 Secrets for Github Action
	5.4 System
	5.4.1 System Overview
	User Requirements
	System Architecture
	System Components

	References

	5.4.2 Current Status
	User Security
	Gateway Authorization

	User Workspaces
	Platform Services
	Development Priorities
	References

	5.5 OAuth2 Authorization
	5.5.1 OAuth 2.0 Summary
	Entities
	The OAuth2 Client

	OAuth 2.0 Workflows
	OAuth2 Authorization Code Flow
	OAuth2 PKCE (Proof Key for Code Exchange) Flow

	5.5.2 System Design of DTaaS Authorization Microservice
	Requirements
	Forward Auth Middleware in Traefik
	Auth MS Design

	5.5.3 Auth Microservice
	Workflow
	User Identity using OAuth2.0
	Checking User permissions - Authorization

	Implementation
	Traefik-forward-auth

	5.6 Testing
	5.6.1 Common Questions on Testing
	What is Software Testing
	Why Software Testing
	What is TDD
	What is BDD

	5.6.2 Testing workflow
	Unit Tests
	Benefits of Unit Testing
	Unit Tests in DTaaS

	Integration tests
	End-to-End tests
	Feature Tests

	5.6.3 References

	5.7 Docker workflow for DTaaS
	5.7.1 Folder Structure
	5.7.2 Build and Publish Docker Images
	Developers

	5.7.3 Running Docker Containers
	Development Environment
	Access the Application

	5.8 Publish NPM packages
	5.8.1 Default npm registry
	5.8.2 Github npm registry
	5.8.3 Private Registry
	Setup private npm registry
	Publish to private npm registry

	Use the packages

	5.9 DevOps Framework
	5.9.1 Overview
	Expectations From a DevOps Framework
	High Level Architecture
	Gitbeaker

	5.9.2 GitLab CI/CD Infrastructure
	CI/CD Pipelines
	Parent Pipeline
	Digital Twin Structure
	Child Pipelines

	5.9.3 API Calls
	5.9.4 Implemented Classes
	GitlabInstance
	DigitalTwin
	LibraryAsset

	6. Few issues in the Software
	6.1 Third-Party Software
	6.1.1 ML Workspace

	6.2 Gitlab

	7. Contributors
	7.1 Users
	7.2 Example Contributors
	7.3 Documentation

	8. License
	8.1 License
	8.2 Third Party Software
	8.2.1 User Installations
	8.2.2 Development Environments
	8.2.3 Package Dependencies

