
Digital Twin as a Service
(DTaaS)

DTaaS Development Team

Copyright © 2022 - 2023 The INTO-CPS Association

Table of contents

41. What is DTaaS?

41.1 License

52. Admin

52.1 Overview

62.2 Setting Up OAuth

82.3 Host Install

132.4 Vagrant

222.5 Separate Packages

272.6 Third-party Services

283. User

283.1 Motivation

293.2 Overview

313.3 DTaaS Website Screenshots

423.4 Library

493.5 Digital Twins

553.6 Examples

694. Frequently Asked Questions

694.1 Abreviations

694.2 General Questions

704.3 Digital Twin Models

704.4 Communication Between Physical Twin and Digital Twin

714.5 Data Management

724.6 Platform Native Services on DTaaS Platform

724.7 Comparison with other DT Platforms

734.8 Create Assets

734.9 GDPR Concerns

755. Developer

755.1 Developers Guide

775.2 System

835.3 Components

905.4 Testing

925.5 Publish NPM packages

936. Few issues in the Software

936.1 Some limitations

936.2 Third-Party Software

Table of contents

- 2/98 - Copyright © 2022 - 2023 The INTO-CPS Association

936.3 Gitlab

947. Contributors

947.1 Users

947.2 Documentation

958. License

Table of contents

- 3/98 - Copyright © 2022 - 2023 The INTO-CPS Association

1. What is DTaaS?

The Digital Twin as a Service (DTaaS) software platform is useful to Build, Use and Share digital twins (DTs).

Build: The DTs are built on the software platform using the reusable DT components available on the platform.

Use: Use the DTs on the software platform.

Share: Share ready to use DTs with other users. It is also possible to share the services offered by one DT with other users.

There is an overview of the software available in the form of slides, video, and feature walkthrough.

1.1 License

This software is owned by The INTO-CPS Association and is available under the INTO-CPS License.

The DTaaS software platform uses Træfik, ML Workspace, Grafana, InfluxDB, MQTT and RabbitMQ open-source components.

These software components have their own licenses.

1. What is DTaaS?

- 4/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/DTaaS-short-intro.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/DTaaS-short-intro.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/dtaas-v0.3-demo.mp4
https://into-cps.org/
https://github.com/traefik/traefik
https://github.com/ml-tooling/ml-workspace
https://github.com/grafana/grafana
https://github.com/influxdata/influxdb
https://github.com/eclipse/mosquitto
https://github.com/rabbitmq/rabbitmq-server

2. Admin

2.1 Overview

2.1.1 What is the goal?

The goal is to set up the DTaaS infrastructure in order to enable your users to use the DTaaS. As an admin you will administrate

the users and the servers of the system.

2.1.2 What are the requirements?

OAuth Provider

You need to have an OAuth Provider running, which the DTaaS can use for authentication. This is described further in the

authentication section.

Domain name

The DTaaS software can only be hosted on a server with a domain name like foo.com.

Reverse Proxy

The installation setup assumes that the foo.com server is behind a reverse proxy / load balancer that provides https termination.

You can still use the DTaaS software even if you do not have this reverse proxy. If you do not have a reverse proxy, please replace

https://foo.com with http://foo.com in client .env file and in OAuth registration. Other installation configuration remains the same.

2.1.3 What to install?

The DTaaS can be installed in different ways. Each version is for different purposes:

Trial installation on single host

Production installation on single host

On one or two Vagrant virtual machines

Seperater Packages: client website and lib microservice

Follow the installation that fit your usecase.

•

•

•

•

2. Admin

- 5/98 - Copyright © 2022 - 2023 The INTO-CPS Association

2.2 Setting Up OAuth

To enable user authentication on DTaaS React client website, you will use the OAuth authentication protocol, specifically the

PKCE authentication flow. Here are the steps to get started:

1. Choose Your GitLab Server:

You need to set up OAuth authentication on a GitLab server. The commercial gitlab.com is not suitable for multi-user

authentication (DTaaS requires this), so you'll need an on-premise GitLab instance.

You can use GitLab Omnibus Docker for this purpose.

Configure the OAuth application as an instance-wide authentication type.

2. Determine Your Website's Hostname:

Before setting up OAuth on GitLab, decide on the hostname for your website. It's recommended to use a self-hosted GitLab

instance, which you will use in other parts of the DTaaS application.

3. Define Callback and Logout URLs:

For the PKCE authentication flow to function correctly, you need two URLs: a callback URL and a logout URL.

The callback URL informs the OAuth provider of the page where signed-in users should be redirected. It's different from the

landing homepage of the DTaaS application.

The logout URL is where users will be directed after logging out.

4. OAuth Application Creation:

During the creation of the OAuth application on GitLab, you need to specify the scope. Choose openid, profile, read_user,

read_repository, and api scopes.

5. Application ID:

After successfully creating the OAuth application, GitLab generates an application ID. This is a long string of HEX values that

you will need for your configuration files.

6. Required Information from OAuth Application:

You will need the following information from the OAuth application registered on GitLab:

2.2.1 Development Environment

There needs to be a valid callback and logout URLs for development and testing purposes. You can use the same oauth

application id for both development, testing and deployment scenarios. Only the callback and logout URLs change. It is possible

to register multiple callback URLs in one oauth application. In order to use oauth for development and testing on developer

computer (localhost), you need to add the following to oauth callback URL.

The port 4000 is the default port for running the client website.

•

•

•

•

•

•

•

•

•

•

GitLab Variable Name Variable Name in Client env.js Default Value

OAuth Provider REACT_APP_AUTH_AUTHORITY https://gitlab.foo.com/

Application ID REACT_APP_CLIENT_ID

Callback URL REACT_APP_REDIRECT_URI https://foo.com/Library

Scopes REACT_APP_GITLAB_SCOPES openid, profile, read_user, read_repository, api

1
2
3

DTaaS application URL: http://localhost:4000
Callback URL: http://localhost:4000/Library
Logout URL: http://localhost:4000

2.2 Setting Up OAuth

- 6/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://docs.gitlab.com/ee/install/docker.html
https://docs.gitlab.com/ee/integration/oauth_provider.html#create-an-instance-wide-application
https://gitlab.foo.com/
https://foo.com/Library

2.2.2 Multiple DTaaS applications

The DTaaS is a regular web application. It is possible to host multiple DTaaS applications on the same server. The only

requirement is to have a distinct URLs. You can have three DTaaS applications running at the following URLs.

All of these instances can use the same gitlab instance for authentication.

If you are hosting multiple DTaaS instances on the same server, do not install DTaaS with a null basename on the same server.

Even though it works well, the setup is confusing to setup and may lead to maintenance issues.

If you choose to host your DTaaS application with a basename (say bar), then the URLs in env.js change to:

1
2
3

https://foo.com/au
https://foo.com/acme
https://foo.com/bar

DTaaS application

URL

Gitlab Instance

URL

Callback URL Logout URL Application ID

https://foo.com/au https://

foo.gitlab.com

https://foo.com/au/

Library

https://

foo.com/au

autogenerated by

gitlab

https://foo.com/acme https://

foo.gitlab.com

https://foo.com/au/

Library

https://

foo.com/au

autogenerated by

gitlab

https://foo.com/bar https://

foo.gitlab.com

https://foo.com/au/

Library

https://

foo.com/au

autogenerated by

gitlab

1
2
3
4

DTaaS application URL: https://foo.com/bar
Gitlab instance URL: https://foo.gitlab.com
Callback URL: https://foo.com/bar/Library
Logout URL: https://foo.com/bar

2.2.2 Multiple DTaaS applications

- 7/98 - Copyright © 2022 - 2023 The INTO-CPS Association

2.3 Host Install

2.3.1 Trial Installation

To try out the software, you can install it on Ubuntu Server 22.04 Operating System. The setup requires a machine which can

spare 16GB RAM, 8 vCPUs and 50GB Hard Disk space to the vagrant box. A successful installation will create a setup similar to

the one shown in the figure.

A one-step installation script is provided on this page. This script sets up the DTaaS software with default credentials and users.

You can use it to check a test installation of DTaaS software.

Pre-requisites

1. DOMAIN NAME

You need a domain name to run the application. The install script assumes foo.com to be your domain name. You will change this

after running the script.

2.3 Host Install

- 8/98 - Copyright © 2022 - 2023 The INTO-CPS Association

2. GITLAB OAUTH APPLICATION

The DTaaS react website requires Gitlab OAuth provider. If you need more help with this step, please see the Authentication

page.

You need the following information from the OAuth application registered on Gitlab:

You can also see Gitlab help page for getting the Gitlab OAuth application details.

Install

This test installation has default credentials and is thus highly insecure.

Post install

After the install-script. Please change foo.com and Gitlab OAuth details to your local settings in the following files.

Sanity check

Now when you visit your domain, you should be able to login through your OAuth Provider and be able to access the DTaas web

UI.

References

Image sources: Ubuntu logo, Traefik logo, ml-workspace, nodejs, reactjs, nestjs

Gitlab Variable Name Variable name in Client env.js Default Value

OAuth Provider REACT_APP_AUTH_AUTHORITY https://gitlab.foo.com/

Application ID REACT_APP_CLIENT_ID

Callback URL REACT_APP_REDIRECT_URI https://foo.com/Library

Scopes REACT_APP_GITLAB_SCOPES openid, profile, read_user, read_repository, api

1
2

wget https://raw.githubusercontent.com/INTO-CPS-Association/DTaaS/release-v0.3/deploy/single-script-install.sh
bash single-script-install.sh

Warning

1
2

~/DTaaS/client/build/env.js
~/DTaaS/servers/config/gateway/dynamic/fileConfig.yml

2.3.1 Trial Installation

- 9/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://docs.gitlab.com/ee/integration/oauth_provider.html
https://logodix.com/linux-ubuntu
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://www.metachris.com/2017/01/how-to-install-nodejs-7-on-ubuntu-and-centos/
https://krify.co/about-reactjs/
https://camunda.com/blog/2019/10/nestjs-tx-email/

2.3.2 DTaaS on Linux Operating System

These are installation instructions for running DTaaS application on a Ubuntu Server 22.04 Operating System. The setup

requires a machine which can spare 16GB RAM, 8 vCPUs and 50GB Hard Disk space.

A dummy foo.com URL has been used for illustration. Please change this to your unique website URL. It is assumed that you are

going to serve the application in only HTTPS mode.

A successful installation will create a setup similar to the one shown in the figure.

Please follow these steps to make this work in your local environment. Download the DTaaS.zip from the releases page. Unzip

the same into a directory named DTaaS. The rest of the instructions assume that your working directory is DTaaS.

If you only want to test the application and are not setting up a production instance, you can follow the instructions of trial

installation.

Note

2.3.2 DTaaS on Linux Operating System

- 10/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/releases

Configuration

You need to configure the Traefik gateway, library microservice and react client website.

The first step is to decide on the number of users and their usenames. The traefik gateway configuration has a template for two

users. You can modify the usernames in the template to the usernames chosen by you.

TRAEFIK GATEWAY SERVER

You can run the Traefik gateway server in both HTTP and HTTPS mode to experience the DTaaS application. The installation

guide assumes that you can run the application in HTTPS mode.

The Traefik gateway configuration is at deploy/config/gateway/fileConfig.yml. Change foo.com to your local hostname and user1/

user2 to the usernames chosen by you.

Do not use http:// or https:// in deploy/config/gateway/fileConfig.yml.

Authentication

This step requires htpasswd commandline utility. If it is not available on your system, please install the same by using

You can now proceed with update of the gateway authentication setup. The dummy username is foo and the password is bar .

Please change this before starting the gateway.

The user credentials added in deploy/config/gateway/auth should match the usernames in deploy/config/gateway/fileConfig.yml.

Lib microservice

The library microservice requires configuration. A template of this configuration file is given in deploy/config/lib file. Please

modify this file as per your needs.

The first step in this configuration is to prepare the a filesystem for users. An example file system in files/ directory. You can

rename the top-level user1/user2 to the usernames chosen by you.

Add an environment file named .env in lib for the library microservice. An example .env file is given below. The simplest

possibility is to use local mode with the following example. The filepath is the absolute filepath to files/ directory. You can copy

this configuration into deploy/config/lib file to get started.

React Client Website

GITLAB OAUTH APPLICATION

The DTaaS react website requires Gitlab OAuth provider. If you need more help with this step, please see the Authentication

page.

Tip

1 sudo apt-get install -y apache2-utils

1
2
3
4

rm deploy/config/gateway/auth
touch deploy/config/gateway/auth
htpasswd deploy/config/gateway/auth <first_username>
password: <your password>

1
2
3
4
5
6

PORT='4001'
MODE='local'
LOCAL_PATH ='filepath'
LOG_LEVEL='debug'
APOLLO_PATH='/lib'
GRAPHQL_PLAYGROUND='true'

2.3.2 DTaaS on Linux Operating System

- 11/98 - Copyright © 2022 - 2023 The INTO-CPS Association

You need the following information from the OAuth application registered on Gitlab:

You can also see Gitlab help page for getting the Gitlab OAuth application details.

UPDATE CLIENT CONFIG

Change the React website configuration in deploy/config/client/env.js.

Update the installation script

Open deploy/install.sh and update user1/user2 to usernames chosen by you.

Perform the Installation

Go to the DTaaS directory and execute

You can run this script multiple times until the installation is successful.

Access the application

Now you should be able to access the DTaaS application at: https://foo.com

References

Image sources: Ubuntu logo, Traefik logo, ml-workspace, nodejs, reactjs, nestjs

Gitlab Variable Name Variable name in Client env.js Default Value

OAuth Provider REACT_APP_AUTH_AUTHORITY https://gitlab.foo.com/

Application ID REACT_APP_CLIENT_ID

Callback URL REACT_APP_REDIRECT_URI https://foo.com/Library

Scopes REACT_APP_GITLAB_SCOPES openid, profile, read_user, read_repository, api

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

window.env = {
REACT_APP_ENVIRONMENT: 'prod',
REACT_APP_URL: 'https://foo.com/',
REACT_APP_URL_BASENAME: 'dtaas',
REACT_APP_URL_DTLINK: '/lab',
REACT_APP_URL_LIBLINK: '',
REACT_APP_WORKBENCHLINK_TERMINAL: '/terminals/main',
REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',
REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: '',

REACT_APP_CLIENT_ID: '934b98f03f1b6f743832b2840bf7cccaed93c3bfe579093dd0942a433691ccc0',
REACT_APP_AUTH_AUTHORITY: 'https://gitlab.foo.com/',
REACT_APP_REDIRECT_URI: 'https://foo.com/Library',
REACT_APP_LOGOUT_REDIRECT_URI: 'https://foo.com/',
REACT_APP_GITLAB_SCOPES: 'openid profile read_user read_repository api',

};

1 source deploy/install.sh

2.3.2 DTaaS on Linux Operating System

- 12/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://docs.gitlab.com/ee/integration/oauth_provider.html
https://logodix.com/linux-ubuntu
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://www.metachris.com/2017/01/how-to-install-nodejs-7-on-ubuntu-and-centos/
https://krify.co/about-reactjs/
https://camunda.com/blog/2019/10/nestjs-tx-email/

2.4 Vagrant

2.4.1 DTaaS Vagrant Box

This README provides instructions on creating a custom Operating System virtual disk for running the DTaaS software. The

virtual disk is managed by vagrant. The purpose is two fold:

Provide cross-platform installation of the DTaaS application. Any operating system supporting use of vagrant software utility

can support installation of the DTaaS software.

Create a ready to use development environment for code contributors.

There are two scripts in this directory:

If you are installing the DTaaS for developers, the default installation caters to your needs. You can skip the next step and

continue with the creation of vagrant box.

If you are a developer and would like additional software installed, you need to modify Vagrantfile . The existing Vagrantfile has two

lines:

Uncomment the second line to have more software components installed. If you are not a developer, no changes are required to

the Vagrantfile .

This vagrant box installed for users will have the following items:

docker v24.0

nodejs v18.8

yarn v1.22

npm v10.2

containers - ml-workspace v0.13, traefik v2.10, gitlab-ce v16.4, influxdb v2.7, grafana v10.1, rabbitmq v3-management, eclipse-

mosquitto (mqtt) v2

This vagrant box installed for developers will have the following items additional items:

docker-compose v2.20

microk8s v1.27

jupyterlab

mkdocs

container - telegraf v1.28

At the end of installation, the software stack created in vagrant box can be visualised as shown in the following figure.

•

•

Script name Purpose Default

user.sh user installation

developer.sh developer installation

1
2

config.vm.provision "shell", path: "user.sh"
#config.vm.provision "shell", path: "developer.sh"

1.

2.

3.

4.

5.

•

•

•

•

•

2.4 Vagrant

- 13/98 - Copyright © 2022 - 2023 The INTO-CPS Association

2.4.1 DTaaS Vagrant Box

- 14/98 - Copyright © 2022 - 2023 The INTO-CPS Association

The upcoming instructions will help with the creation of base vagrant box.

References

Image sources: Ubuntu logo

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#create a key pair
ssh-keygen -b 4096 -t rsa -f key -q -N ""
mv key vagrant
mv key.pub vagrant.pub

vagrant up

let the provisioning be complete
replace the vagrant ssh key-pair with personal one
vagrant ssh

install the oh-my-zsh
sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"
install plugins: history, autosuggestions,
git clone https://github.com/zsh-users/zsh-autosuggestions ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-autosuggestions

inside ~/.zshrc, modify the following line
plugins=(git zsh-autosuggestions history cp tmux)

remove the vagrant default public key - first line of
/home/vagrant/.ssh/authorized_keys

exit vagrant guest machine and then
copy own private key to vagrant private key location
cp vagrant .vagrant/machines/default/virtualbox/private_key

check
vagrant ssh #should work

vagrant halt

vagrant package --base dtaas \
--info "info.json" --output dtaas.vagrant

Add box to the vagrant cache in ~/.vagrant.d/boxes directory
vagrant box add --name dtaas ./dtaas.vagrant

You can use this box in other vagrant boxes using
#config.vm.box = "dtaas"

2.4.1 DTaaS Vagrant Box

- 15/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://logodix.com/linux-ubuntu

2.4.2 DTaaS on Single Vagrant Machine

These are installation instructions for running DTaaS software inside one vagrant Virtual Machine. The setup requires a machine

which can spare 16GB RAM, 8 vCPUs and 50GB Hard Disk space to the vagrant box.

Create Base Vagrant Box

Create dtaas Vagrant box. You would have created an SSH key pair - vagrant and vagrant.pub. The vagrant is the private SSH

key and is needed for the next steps. Copy vagrant SSH private key into the current directory (deploy/vagrant/single-machine). This

shall be useful for logging into the vagrant machines created for two-machine deployment.

Target Installation Setup

The goal is to use the dtaas Vagrant box to install the DTaaS software on one single vagrant machine. A graphical illustration of

a successful installation can be seen here.

2.4.2 DTaaS on Single Vagrant Machine

- 16/98 - Copyright © 2022 - 2023 The INTO-CPS Association

2.4.2 DTaaS on Single Vagrant Machine

- 17/98 - Copyright © 2022 - 2023 The INTO-CPS Association

There are many unused software packages/docker containers within the dtaas base box. The used packages/docker containers

are highlighed in blue color.

The illustration shows hosting of gitlab on the same vagrant machine with http(s)://gitlab.foo.com The gitlab setup is outside the

scope this installation guide. Please refer to gitlab docker install for gitlab installation.

Configure Server Settings

A dummy foo.com URL has been used for illustration. Please change this to your unique website URL.

Please follow the next steps to make this installation work in your local environment.

Update the Vagrantfile. Fields to update are:

Hostname (node.vm.hostname = "foo.com")

MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC

address. Otherwise, you can leave this field unchanged.

Other adjustments are optional.

Installation Steps

Execute the following commands from terminal

Set a cronjob inside the vagrant virtual machine to remote the conflicting default route.

If you only want to test the application and are not setting up a production instance, you can follow the instructions of single

script install.

If you are not in a hurry and would rather have a production instance, follow the instructions of regular server installation setup

to complete the installation.

References

Image sources: Ubuntu logo, Traefik logo, ml-workspace, nodejs, reactjs, nestjs

Tip

1.

2.

3.

1
2

vagrant up
vagrant ssh

1
2

wget https://raw.githubusercontent.com/INTO-CPS-Association/DTaaS/release-v0.3/deploy/vagrant/route.sh
sudo bash route.sh

2.4.2 DTaaS on Single Vagrant Machine

- 18/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://docs.gitlab.com/ee/install/docker.html
https://logodix.com/linux-ubuntu
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://www.metachris.com/2017/01/how-to-install-nodejs-7-on-ubuntu-and-centos/
https://krify.co/about-reactjs/
https://camunda.com/blog/2019/10/nestjs-tx-email/

2.4.3 DTaaS on Two Vagrant Machines

These are installation instructions for running DTaaS application in two vagrant virtual machines (VMs). In this setup, all the

user workspaces shall be run on server1 while all the platform services will be run on server2.

The setup requires two server VMs with the following hardware configuration:

server1: 16GB RAM, 8 x64 vCPUs and 50GB Hard Disk space

server2: 6GB RAM, 3 x64 vCPUs and 50GB Hard Disk space

Under the default configuration, two user workspaces are provisioned on server1. The default installation setup also installs

InfluxDB, Grafana, RabbitMQ and MQTT services on server2. If you would like to install more services, you can create shell

scripts to install the same on server2.

Create Base Vagrant Box

Create dtaas Vagrant box. You would have created an SSH key pair - vagrant and vagrant.pub. The vagrant is the private SSH

key and is needed for the next steps. Copy vagrant SSH private key into the current directory (deploy/vagrant/two-machine). This shall

be useful for logging into the vagrant machines created for two-machine deployment.

Target Installation Setup

The goal is to use this dtaas vagrant box to install the DTaaS software on server1 and the default platform services on server2.

Both the servers are vagrant machines.

There are many unused software packages/docker containers within the dtaas base box. The used packages/docker containers

are highlighed in blue and red color.

A graphical illustration of a successful installation can be seen here.

2.4.3 DTaaS on Two Vagrant Machines

- 19/98 - Copyright © 2022 - 2023 The INTO-CPS Association

In this case, both the vagrant boxes are spawed on one server using two vagrant configuration files, namely boxes.json and

Vagrantfile.

The illustration shows hosting of gitlab on the same vagrant machine with http(s)://gitlab.foo.com The gitlab setup is outside the

scope this installation guide. Please refer to gitlab docker install for gitlab installation.

Configure Server Settings

NOTE: A dummy foo.com and services.foo.com URLs has been used for illustration. Please change these to your unique

website URLs.

The first step is to define the network identity of the two VMs. For that, you need server name, hostname and MAC address. The

hostname is the network URL at which the server can be accessed on the web. Please follow these steps to make this work in

your local environment.

Update the boxes.json. There are entries one for each server. The fields to update are:

name - name of server1 ("name" = "dtaas")

hostname - hostname of server1 ("name" = "foo.com")

MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC

address. Otherwise, you can leave this field unchanged.

name - name of server2 ("name" = "services")

hostname - hostname of server2 ("name" = "services.foo.com")

MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC

address. Otherwise, you can leave this field unchanged.

Other adjustments are optional.

Tip

1.

2.

3.

4.

5.

6.

7.

2.4.3 DTaaS on Two Vagrant Machines

- 20/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://docs.gitlab.com/ee/install/docker.html

Installation Steps

The installation instructions are given separately for each vagrant machine.

LAUNCH DTAAS PLATFORM DEFAULT SERVICES

Follow the installation guide for services to install the DTaaS platform services.

After the services are up and running, you can see the following services active within server2 (services.foo.com).

INSTALL DTAAS APPLICATION

Execute the following commands from terminal

If you only want to test the application and are not setting up a production instance, you can follow the instructions of single

script install.

If you are not in a hurry and would rather have a production instance, follow the instructions of regular server installation setup

to complete the installation.

References

Image sources: Ubuntu logo, Traefik logo, ml-workspace, nodejs, reactjs, nestjs

service external url

InfluxDB and visualization service services.foo.com

Grafana visualization service services.foo.com:3000

MQTT communication service services.foo.com:1883

RabbitMQ communication service services.foo.com:5672

RabbitMQ management service services.foo.com:15672

1
2
3
4

vagrant up --provision dtaas
vagrant ssh dtaas
wget https://raw.githubusercontent.com/INTO-CPS-Association/DTaaS/release-v0.3/deploy/vagrant/route.sh
sudo bash route.sh

2.4.3 DTaaS on Two Vagrant Machines

- 21/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://logodix.com/linux-ubuntu
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://www.metachris.com/2017/01/how-to-install-nodejs-7-on-ubuntu-and-centos/
https://krify.co/about-reactjs/
https://camunda.com/blog/2019/10/nestjs-tx-email/

2.5 Separate Packages

2.5 Separate Packages

- 22/98 - Copyright © 2022 - 2023 The INTO-CPS Association

2.5.1 Host the DTaaS Client Website

To host DTaaS client website on your server, follow these steps:

Download the DTaaS-client.zip from the releases page.

Inside the DTaaS-client directory, there is site directory. The site directory contains all the optimized static files that are ready

for deployment.

Setup the oauth application on gitlab instance. See the instructions in authentication page for completing this task.

Locate the file site/env.js and replace the example values to match your infrastructure. The constructed links will be

" REACT_APP_URL / REACT_APP_URL_BASENAME / {username} / {Endpoint} ". See the definitions below:

Copy the entire contents of the build folder to the root directory of your server where you want to deploy the app. You can use

FTP, SFTP, or any other file transfer protocol to transfer the files.

Make sure your server is configured to serve static files. This can vary depending on the server technology you are using, but

typically you will need to configure your server to serve files from a specific directory.

Once the files are on your server, you should be able to access your app by visiting your server's IP address or domain name in

a web browser.

•

•

•

•

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

window.env = {
REACT_APP_ENVIRONMENT: "prod | dev",
REACT_APP_URL: "URL for the gateway",
REACT_APP_URL_BASENAME: "Base URL for the client website"(optional),
REACT_APP_URL_DTLINK: "Endpoint for the Digital Twin",
REACT_APP_URL_LIBLINK: "Endpoint for the Library Assets",
REACT_APP_WORKBENCHLINK_TERMINAL: "Endpoint for the terminal link",
REACT_APP_WORKBENCHLINK_VNCDESKTOP: "Endpoint for the VNC Desktop link",
REACT_APP_WORKBENCHLINK_VSCODE: "Endpoint for the VS Code link",
REACT_APP_WORKBENCHLINK_JUPYTERLAB: "Endpoint for the Jupyter Lab link",
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK:
"Endpoint for the Jupyter Notebook link",

REACT_APP_CLIENT_ID: 'AppID genereated by the gitlab OAuth provider',
REACT_APP_AUTH_AUTHORITY: 'URL of the private gitlab instance',
REACT_APP_REDIRECT_URI: 'URL of the homepage for the logged in users of the website',
REACT_APP_LOGOUT_REDIRECT_URI: 'URL of the homepage for the anonymous users of the website',
REACT_APP_GITLAB_SCOPES: 'OAuth scopes. These should match with the scopes set in gitlab OAuth provider',

};

// Example values with no base URL. Trailing and ending slashes are optional.
window.env = {
REACT_APP_ENVIRONMENT: 'prod',
REACT_APP_URL: 'https://foo.com/',
REACT_APP_URL_BASENAME: '',
REACT_APP_URL_DTLINK: '/lab',
REACT_APP_URL_LIBLINK: '',
REACT_APP_WORKBENCHLINK_TERMINAL: '/terminals/main',
REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',
REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: '',
REACT_APP_CLIENT_ID: '934b98f03f1b6f743832b2840bf7cccaed93c3bfe579093dd0942a433691ccc0',
REACT_APP_AUTH_AUTHORITY: 'https://gitlab.foo.com/',
REACT_APP_REDIRECT_URI: 'https://foo.com/Library',
REACT_APP_LOGOUT_REDIRECT_URI: 'https://foo.com/',
REACT_APP_GITLAB_SCOPES: 'openid profile read_user read_repository api',

};

// Example values with "bar" as basename URL.
//Trailing and ending slashes are optional.
window.env = {
REACT_APP_ENVIRONMENT: "dev",
REACT_APP_URL: 'https://foo.com/',
REACT_APP_URL_BASENAME: 'bar',
REACT_APP_URL_DTLINK: '/lab',
REACT_APP_URL_LIBLINK: '',
REACT_APP_WORKBENCHLINK_TERMINAL: '/terminals/main',
REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',
REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: '',
REACT_APP_CLIENT_ID: '934b98f03f1b6f743832b2840bf7cccaed93c3bfe579093dd0942a433691ccc0',
REACT_APP_AUTH_AUTHORITY: 'https://gitlab.foo.com/',
REACT_APP_REDIRECT_URI: 'https://foo.com/bar/Library',
REACT_APP_LOGOUT_REDIRECT_URI: 'https://foo.com/bar',
REACT_APP_GITLAB_SCOPES: 'openid profile read_user read_repository api',

};

•

•

•

2.5.1 Host the DTaaS Client Website

- 23/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/releases

 The website depends on Traefik gateway and ML Workspace components to be available. Otherwise, you only get a

skeleton non-functional website.

Complementary Components

The website requires background services for providing actual functionality. The minimum background service required is atleast

one ML Workspace serving the following routes.

The username is the user workspace created using ML Workspace docker container. Please follow the instructions in README. You

can create as many user workspaces as you want. If you have two users - alice and bob - on your system, then the following the

commands in will instantiate the required user workspaces.

Given that multiple services are running at different routes, a reverse proxy is needed to map the background services to

external routes. You can use Apache, NGINX, Traefik or any other software to work as reverse proxy.

The website screenshots and usage information is available in user page.

1
2
3
4

https://foo.com/<username>/lab
https://foo.com/<username>/terminals/main
https://foo.com/<username>/tools/vnc/?password=vncpassword
https://foo.com/<username>/tools/vscode/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

mkdir -p files/alice files/bob files/common

printf "\n\n start the user workspaces"
docker run -d \
-p 8090:8080 \
--name "ml-workspace-alice" \
-v "$(pwd)/files/alice:/workspace" \
-v "$(pwd)/files/common:/workspace/common" \
--env AUTHENTICATE_VIA_JUPYTER="" \
--env WORKSPACE_BASE_URL="alice" \
--shm-size 512m \
--restart always \
mltooling/ml-workspace:0.13.2

docker run -d \
-p 8091:8080 \
--name "ml-workspace-bob" \
-v "$(pwd)/files/bob:/workspace" \
-v "$(pwd)/files/common:/workspace/common" \
--env AUTHENTICATE_VIA_JUPYTER="" \
--env WORKSPACE_BASE_URL="bob" \
--shm-size 512m \
--restart always \
mltooling/ml-workspace:0.13.2

2.5.1 Host the DTaaS Client Website

- 24/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/ml-tooling/ml-workspace
https://github.com/ml-tooling/ml-workspace/blob/main/README.md

2.5.2 Host Library Microservice

The lib microservice is a simplified file manager providing graphQL API. It has three features:

provide a listing of directory contents.

transfer a file to user.

Source files can either come from local file system or from a gitlab instance.

The library microservice is designed to manage and serve files, functions, and models to users, allowing them to access and

interact with various resources.

This document provides instructions for running a stand alone library microservice.

Setup the File System

The users expect the following file system structure for their reusable assets.

There is a skeleton file structure in DTaaS codebase. You can copy and create file system for your users.

Gitlab setup (optional)

For this microserivce to be functional, a certain directory or gitlab project structure is expected. The microservice expects that

the gitlab consisting of one group, DTaaS, and within that group, all of the projects be located, user1, user2, ... , as well as a

commons project. Each project corresponds to files of one user. A sample file structure can be seen in gitlab dtaas group. You

can visit the gitlab documentation on groups for help on the management of gitlab groups.

You can clone the git repositories from the dtaas group to get a sample file system structure for the lib microservice.

Setup Microservice

To set up the lib microservice, follow these steps:

Download the lib-microservice.zip from the releases page.

Configuration setup

The microservices uses .env environment files to receive configuration.

•

•

•

2.5.2 Host Library Microservice

- 25/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/files
https://gitlab.com/dtaas
https://docs.gitlab.com/ee/user/group/
https://github.com/INTO-CPS-Association/DTaaS/releases

To set up the environment variables for the lib microservice, create a new file named .env in the lib-ms directory. Then, add the

following variables and their respective values. Below you can see and how, with included examples:

The LOCAL_PATH variable is the absolute filepath to the location of the local directory which will be served to users by the Library

microservice.

The GITLAB_URL , GITLAB_GROUP and TOKEN are only relevant for gitlab mode. The TOKEN should be set to your GitLab Group access API

token. For more information on how to create and use your access token, gitlab page.

Once you've generated a token, copy it and replace the value of TOKEN with your token for the gitlab group, can be found.

Replace the default values the appropriate values for your setup.

NOTE:

When _MODE=local, only LOCAL_PATH is used. Other environment variables are unused.

When MODE=gitlab, GITLAB_URL, TOKEN, and GITLAB_GROUP are used; LOCAL_PATH is unused.

START MICROSERVICE

Config flag

If the environment file is named something other than .env , the filename must be specifed with the command -c, --config <path> ,

when starting the application. For instance,

You can press Ctl+C to halt the application. If you wish to run the microservice in the background, use

The lib microservice is now running and ready to serve files, functions, and models.

Users can access the library microservice at URL: http://localhost:<PORT>/lib .

Service Endpoint

The URL endpoint for this microservice is located at: localhost:PORT/lib

The service API documentation is available on user page.

1
2
3
4
5
6
7
8
9

PORT='4001'
MODE='local' or 'gitlab'
LOCAL_PATH='/Users/<Username>/DTaaS/files'
GITLAB_GROUP='dtaas'
GITLAB_URL='https://gitlab.com/api/graphql'
TOKEN='123-sample-token'
LOG_LEVEL='debug'
APOLLO_PATH='/lib' or ''
GRAPHQL_PLAYGROUND='false' or 'true'

1.

2.

1
2
3

yarn install # Install dependencies for the microservice
yarn build # build the application
yarn start # start the application

1 yarn start -c ".env.development"

1 nohup yarn start & disown

2.5.2 Host Library Microservice

- 26/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://docs.gitlab.com/ee/user/group/settings/group_access_tokens.html

2.6 Third-party Services

The DTaaS software platform uses third-party software services to provide enhanced value to users.

InfluxDB, Grafana, RabbitMQ and Mosquitto are default services integrated into the DTaaS software platform.

2.6.1 Pre-requisites

All these services run on raw TCP/UDP ports. Thus a direct network access to these services is required for both the DTs running

inside the DTaaS software and the PT located outside the DTaaS software.

There are two possible choices here:

Configure Traefik gateway to permit TCP/UDP traffic

Bypass Traefik altogether

Unless you are an informed user of Traefik, we recommend bypassing traefik and provide raw TCP/UDP access to these services

from the Internet.

The InfluxDB service requires a dedicated hostname. The management interface of RabbitMQ service requires a dedicated

hostname as well.

Grafana service can run well behind Traefik gateway. The default Traefik configuration makes permits access to Grafana at URL:

http(s): foo.com/vis.

2.6.2 Configure and Install

If you have not cloned the DTaaS git repository, cloning would be the first step. In case you already have the codebase, you can

skip the cloning step. To clone, do:

The next step in installation is to specify the config of the services. There are two configuration files. The services.yml contains

most of configuration settings. The mqtt-default.conf file contains the MQTT listening port. Update these two config files before

proceeding with the installation of the services.

Now continue with the installation of services.

2.6.3 Use

After the installation is complete, you can see the following services active at the following ports / URLs.

The firewall and network access settings of corporate / cloud network need to be configured to allow external access to the

services. Otherwise the users of DTaaS will not be able to utilize these services from their user workspaces.

•

•

1
2

git clone https://github.com/into-cps-association/DTaaS.git
cd DTaaS/deploy/services

1
2

yarn install
node services.js

service external url

Influx services.foo.com

Grafana services.foo.com:3000

RabbitMQ Broker services.foo.com:5672

RabbitMQ Broker Management Website services.foo.com:15672

MQTT Broker services.foo.com:1883

2.6 Third-party Services

- 27/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3. User

3.1 Motivation

How can DT software platforms enable users collaborate to:

Build digital twins (DTs)

Use DTs themselves

Share DTs with other users

Provide the existing DTs as Service to other users

In addition, how can the DT software platforms:

Support DT lifecycle

Scale up rather than scale down (flexible convention over configuration)

3.1.1 Existing Approaches

There are quite a few solutions proposed in the recent past to solve this problem. Some of them are:

Focus on data from Physical Twins (PTs) to perform analysis, diagnosis, planning etc…

Share DT assets across the upstream, downstream etc….

Evaluate different models of PT

DevOps for Cyber Physical Systems (CPS)

Scale DT / execution of DT / ensemble of related DTs

Support for PT product lifecycle

3.1.2 Our Approach

Support for transition from existing workflows to DT frameworks

Create DTs from reusable assets

Enable users to share DT assets

Offer DTs as a Service

Integrate the DTs with external software systems

Separate configurations of independent DT components

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3. User

- 28/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.2 Overview

3.2.1 Advantages

The DTaaS software platform provides certain advantages to users:

Support for different kinds of Digital Twins

CFD, Simulink, co-simulation, FEM, ROM, ML etc.

Integrates with other Digital Twin frameworks

Facilitate availability of Digital Twin as a Service

Collaboration and reuse

Private workspaces for verification of reusable assets, trial run DTs

Cost effectiveness

3.2.2 Software Features

Each installation of DTaaS platform comes with the features highlighted in the following picture.

All the users have dedicated workspaces. These workspaces are dockerized versions of Linux Desktops. The user desktops are

isolated so the installations and customizations done in one user workspace do not effect the other user workspaces.

Each user workspace comes with some development tools pre-installed. These tools are directly accessible from web browser.

The following tools are available at present:

In addition, users have access to xfce-based remote desktop via VNC client. The VNC client is available right in the web browser.

The xfce supported desktop software can also be run in their workspace.

•

•

•

•

•

•

•

Tool Advantage

Jupyter Lab Provides flexible creation and use of digital twins and their components from web browser. All the

native Jupyterlab usecases are supported here.

Jupyter Notebook Useful for web-based management of their files (library assets)

VS Code in the

browser

A popular IDE for software development. Users can develop their digital twin-related assets here.

ungit An interactive git client. Users can work with git repositories from web browser

3.2 Overview

- 29/98 - Copyright © 2022 - 2023 The INTO-CPS Association

The DTaaS software platform has some pre-installed services available. The currently available services are:

In addition, the workspaces are connected to the Internet so all the Digital Twins running in the workspace can interact with

both the internal and external services.

The users can publish and reuse the digital twin assets available on the platform. In addition, users can run their digital twins

and make these live digital twins available as services to their clients. The clients need not be users of the DTaaS software

installation.

Service Advantage

InfluxDB Time-series database primarly for storing time-series data from physical twins. The digital twins can use an

already existing data. Users can also create visualization dashboards for their digital twins.

RabbitMQ Communication broker for communication between physical and digital twins

Grafana Visualization dashboards for their digital twins.

MQTT Lightweight data transfer broker for IoT devices / physical twins feeding data into digital twins.

3.2.2 Software Features

- 30/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.3 DTaaS Website Screenshots

This page contains a screenshot driven preview of the website serving the DTaaS software platform.

3.3.1 Login to enter the DTaaS software platform

The screen presents with HTTP authentication form. You can enter the user credentials. If the DTaaS is being served over HTTPS

secure communication protocol, the username and password are secure.

3.3.2 Start the Authentication

You are now logged into the DTaaS server. The DTaaS uses third-party authentication protocol known as OAuth. This protocol

provides secure access to a DTaaS installation if users have a working active accounts at the selected OAuth service provider.

The DTaaS uses Gitlab as OAuth provider.

3.3 DTaaS Website Screenshots

- 31/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-proof-key-for-code-exchange-pkce

You can see the Gitlab signin button. A click on this button takes you to Gitlab instance providing authentication for DTaaS.

3.3.3 Authenticate at Gitlab

The username and password authentication takes place on the gitlab website. Enter your username and password in the login

form.

3.3.3 Authenticate at Gitlab

- 32/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.3.4 Permit DTaaS to Use Gitlab

The DTaaS application needs your permission to use your Gitlab account for authentication. Click on Authorize button.

3.3.4 Permit DTaaS to Use Gitlab

- 33/98 - Copyright © 2022 - 2023 The INTO-CPS Association

After successful authentication, you will be redirected to the Library page of the DTaaS website.

3.3.5 Overview of menu items

The menu is hidden by default. Only the icons of menu items are visible. You can click on the icon in the top-left corner of the

page to see the menu.

3.3.5 Overview of menu items

- 34/98 - Copyright © 2022 - 2023 The INTO-CPS Association

There are three menu items:

Library: for management of reusable library assets. You can upload, download, create and modify new files on this page.

Digital Twins: for management of digital twins. You are presented with the Jupyter Lab page from which you can run the digital

twins.

Workbench: Not all digital twins can be managed within Jupyter Lab. You have more tools at your disposal on this page.

3.3.5 Overview of menu items

- 35/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.3.6 Library tabs and their help text

You can see the file manager and five tabs above the library manager. Each tab provides help text to guide users in the use of

different directories in their workspace.

The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and

functions can be used to create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to

their use; functions written by domain experts along with right data inputs can make model calibration an achievable goal. Another

use of functions is to process the sensor and actuator data of both Physical Twins and Digital Twins.

The data sources and sinks available to a digital twins. Typical examples of data sources are sensor measurements from Physical

Twins, and test data provided by manufacturers for calibration of models. Typical examples of data sinks are visualization software,

external users and data storage services. There exist special outputs such as events, and commands which are akin to control outputs

from a Digital Twin. These control outputs usually go to Physical Twins, but they can also go to another Digital Twin.

The model assets are used to describe different aspects of Physical Twins and their environment, at different levels of abstraction.

Therefore, it is possible to have multiple models for the same Physical Twin. For example, a flexible robot used in a car production

plant may have structural model(s) which will be useful in tracking the wear and tear of parts. The same robot can have a

behavioural model(s) describing the safety guarantees provided by the robot manufacturer. The same robot can also have a

functional model(s) describing the part manufacturing capabilities of the robot.

Functions

Data

Models

3.3.6 Library tabs and their help text

- 36/98 - Copyright © 2022 - 2023 The INTO-CPS Association

The software tool assets are software used to create, evaluate and analyze models. These tools are executed on top of a computing

platforms, i.e., an operating system, or virtual machines like Java virtual machine, or inside docker containers. The tools tend to be

platform specific, making them less reusable than models. A tool can be packaged to run on a local or distributed virtual machine

environments thus allowing selection of most suitable execution environment for a Digital Twin. Most models require tools to

evaluate them in the context of data inputs. There exist cases where executable packages are run as binaries in a computing

environment. Each of these packages are a pre-packaged combination of models and tools put together to create a ready to use

Digital Twins.

These are ready to use digital twins created by one or more users. These digital twins can be reconfigured later for specific use

cases.

In addition to the five directories, there is also common directory in which five sub-directories exist. These sub-directories are:

data, functions, models, tools and digital twins.

The common directory again has four sub-directories: * data * functions * models * tools * digital twins The assets common to all

users are placed in common.

The items used by more than one user are placed in common. The items in the common directory are available to all users.

Further explanation of directory structure and placement of reusable assets within the the directory structure is in the assets

page

 The file manager is based on Jupyter notebook and all the tasks you can perform in the Jupyter Notebook can be undertaken

here.

Tools

Digital

Common

3.3.6 Library tabs and their help text

- 37/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.3.7 Digital Twins page

The digital twins page has three tabs and the central pane opens Jupyter lab. There are three tabs with helpful instructions on

the suggested tasks you can undertake in the Create - Execute - Analyze life cycle phases of digital twin. You can see more

explanation on the life cycle phases of digital twin.

Create digital twins from tools provided within user workspaces. Each digital twin will have one directory. It is suggested that user

provide one bash shell script to run their digital twin. Users can create the required scripts and other files from tools provided in

Workbench page.

Digital twins are executed from within user workspaces. The given bash script gets executed from digital twin directory. Terminal-

based digital twins can be executed from VSCode and graphical digital twins can be executed from VNC GUI. The results of

execution can be placed in the data directory.

The analysis of digital twins requires running of digital twin script from user workspace. The execution results placed within data

directory are processed by analysis scripts and results are placed back in the data directory. These scripts can either be executed

from VSCode and graphical results or can be executed from VNC GUI. The analysis of digital twins requires running of digital twin

script from user workspace. The execution results placed within data directory are processed by analysis scripts and results are

placed back in the data directory. These scripts can either be executed from VSCode and graphical results or can be executed from

VNC GUI.

 The reusable assets (files) seen in the file manager are available in the Jupyter Lab. In addition, there is a git plugin installed

in the Jupyter Lab using which you can link your files with the external git repositories.

Create

Execute

Analyze

3.3.7 Digital Twins page

- 38/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.3.8 Workbench

The workbench page provides links to four integrated tools.

The hyperlinks open in new browser tab. The screenshots of pages opened in new browser are:

3.3.8 Workbench

- 39/98 - Copyright © 2022 - 2023 The INTO-CPS Association

The Terminal hyperlink does not always work reliably. If you want terminal. Please use the tools dropdown in the Jupyter Notebook.

The Terminal hyperlink does not always work reliably. If you want terminal. Please use the tools dropdown in the Jupyter Notebook.

Bug

3.3.8 Workbench

- 40/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.3.9 Finally logout

You have to close the browser in order to completely exit the DTaaS software platform.

3.3.9 Finally logout

- 41/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.4 Library

3.4.1 Reusable Assets

The reusability of digital twin assets makes it easy for users to work with the digital twins. The reusability of assets is a

fundamental feature of the platform.

Kinds of Reusable Assets

The DTaaS software categorizes all the reusable library assets into five categories:

FUNCTIONS

The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries

and functions can be used to create useful function assets for the platform. In some cases, Digital Twin models require

calibration prior to their use; functions written by domain experts along with right data inputs can make model calibration an

achievable goal. Another use of functions is to process the sensor and actuator data of both Physical Twins and Digital Twins.

DATA

The data sources and sinks available to a digital twins. Typical examples of data sources are sensor measurements from Physical

Twins, and test data provided by manufacturers for calibration of models. Typical examples of data sinks are visualization

software, external users and data storage services. There exist special outputs such as events, and commands which are akin to

control outputs from a Digital Twin. These control outputs usually go to Physical Twins, but they can also go to another Digital

Twin.

MODELS

The model assets are used to describe different aspects of Physical Twins and their environment, at different levels of

abstraction. Therefore, it is possible to have multiple models for the same Physical Twin. For example, a flexible robot used in a

car production plant may have structural model(s) which will be useful in tracking the wear and tear of parts. The same robot

can have a behavioural model(s) describing the safety guarantees provided by the robot manufacturer. The same robot can also

have a functional model(s) describing the part manufacturing capabilities of the robot.

3.4 Library

- 42/98 - Copyright © 2022 - 2023 The INTO-CPS Association

TOOLS

The software tool assets are software used to create, evaluate and analyze models. These tools are executed on top of a

computing platforms, i.e., an operating system, or virtual machines like Java virtual machine, or inside docker containers. The

tools tend to be platform specific, making them less reusable than models. A tool can be packaged to run on a local or distributed

virtual machine environments thus allowing selection of most suitable execution environment for a Digital Twin. Most models

require tools to evaluate them in the context of data inputs. There exist cases where executable packages are run as binaries in a

computing environment. Each of these packages are a pre-packaged combination of models and tools put together to create a

ready to use Digital Twins.

DIGITAL TWINS

These are ready to use digital twins created by one or more users. These digital twins can be reconfigured later for specific use

cases.

File System Structure

Each user has their assets put into five different directories named above. In addition, there will also be common library assets

that all users have access to. A simplified example of the structure is as follows:

The DTaaS is agnostic to the format of your assets. The only requirement is that they are files which can be uploaded on the Library

page. Any directories can be compressed as one file and uploaded. You can decompress the file into a directory from a Terminal or

xfce Desktop available on the Workbench page.

A recommended file system structure for storing assets is also available in DTaaS examples.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

workspace/
 data/
 data1/ (ex: sensor)
 filename (ex: sensor.csv)
 README.md
 data2/ (ex: turbine)
 README.md (remote source; no local file)
 ...
 digital_twins/
 digital_twin-1/ (ex: incubator)
 code and config
 README.md (usage instructions)
 digital_twin-2/ (ex: mass spring damper)
 code and config
 README.md (usage instructions)
 digital_twin-3/ (ex: model swap)
 code and config
 README.md (usage instructions)
 ...
 functions/
 function1/ (ex: graphs)
 filename (ex: graphs.py)
 README.md
 function2/ (ex: statistics)
 filename (ex: statistics.py)
 README.md
 ...
 models/
 model1/ (ex: spring)
 filename (ex: spring.fmu)
 README.md
 model2/ (ex: building)
 filename (ex: building.skp)
 README.md
 model3/ (ex: rabbitmq)
 filename (ex: rabbitmq.fmu)
 README.md
 ...
 tools/
 tool1/ (ex: maestro)
 filename (ex: maestro.jar)
 README.md
 ...
 common/
 data/
 functions/
 models/
 tools/

Tip

3.4.1 Reusable Assets

- 43/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS-examples

Upload Assets

Users can upload assets into their workspace using Library page of the website.

You can go into a directory and click on the upload button to upload a file or a directory into your workspace. This asset is then

available in all the workbench tools you can use. You can also create new assets on the page by clicking on new drop down menu.

This is a simple web interface which allows you to create text-based files. You need to upload other files using upload button.

The user workbench has the following services:

Jupyter Notebook and Lab

VS Code

XFCE Desktop Environment available via VNC

Terminal

Users can also bring their DT assets into user workspaces from outside using any of the above mentioned services. The

developers using git repositories can clone from and push to remote git servers. Users can also use widely used file transfer

protocols such as FTP, and SCP to bring the required DT assets into their workspaces.

•

•

•

•

3.4.1 Reusable Assets

- 44/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.4.2 Library Microservice

The library microservice provides an API interface to reusable assets library. This is only for expert users who

need to integrate the DTaaS with their own IT systems. Regular users can safely skip this page.

The lib microservice is responsible for handling and serving the contents of library assets of the DTaaS platform. It provides API

endpoints for clients to query, and fetch these assets.

This document provides instructions for using the library microservice.

Please see assets for a suggested storage conventions of your library assets.

Once the assets are stored in the library, you can access the server's endpoint by typing in the following URL: http://foo.com/lib .

The URL opens a graphql playground. You can check the query schema and try sample queries here. You can also send graphql

queries as HTTP POST requests and get responses.

API Queries

The library microservice services two API calls:

Provide a list of contents for a directory

Fetch a file from the available files

The API calls are accepted over GraphQL and HTTP API end points. The format of the accepted queries are:

PROVIDE LIST OF CONTENTS FOR A DIRECTORY

To retrieve a list of files in a directory, use the following GraphQL query.

Replace path with the desired directory path.

•

•

3.4.2 Library Microservice

- 45/98 - Copyright © 2022 - 2023 The INTO-CPS Association

send requests to: https://foo.com/lib

3.4.2 Library Microservice

- 46/98 - Copyright © 2022 - 2023 The INTO-CPS Association

GraphQL Query GraphQL Response HTTP Request HTTP Response

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

query {
 listDirectory(path: "user1") {
 repository {
 tree {
 blobs {
 edges {
 node {
 name
 type
 }
 }
 }
 trees {
 edges {
 node {
 name
 type
 }
 }
 }
 }
 }
 }
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

{
 "data": {
 "listDirectory": {
 "repository": {
 "tree": {
 "blobs": {
 "edges": []
 },
 "trees": {
 "edges": [
 {
 "node": {
 "name": "common",
 "type": "tree"
 }
 },
 {
 "node": {
 "name": "data",
 "type": "tree"
 }
 },
 {
 "node": {
 "name": "digital twins",
 "type": "tree"
 }
 },
 {
 "node": {
 "name": "functions",
 "type": "tree"
 }
 },
 {
 "node": {
 "name": "models",
 "type": "tree"
 }
 },
 {
 "node": {
 "name": "tools",
 "type": "tree"
 }
 }
]
 }
 }
 }
 }
 }
}

1
2
3
4
5
6
7
8

POST /lib HTTP/1.1
Host: foo.com
Content-Type: application/json
Content-Length: 388

{
 "query":"query {\n listDirectory(path: \"user1\") {\n repository {\n tree {\n blobs {\n edges {\n node {\n name\n
type\n }\n }\n }\n trees {\n edges {\n node {\n name\n type\n }\n }\n }
\n }\n }\n }\n}"
}

1
2
3
4
5
6
7
8

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Connection: close
Content-Length: 306
Content-Type: application/json; charset=utf-8
Date: Tue, 26 Sep 2023 20:26:49 GMT
X-Powered-By: Express
{"data":{"listDirectory":{"repository":{"tree":{"blobs":{"edges":[]},"trees":{"edges":[{"node":{"name":"data","type":"tree"}},{"node":{"name":"digital twins","type":"tree"}},{"node":
{"name":"functions","type":"tree"}},{"node":{"name":"models","type":"tree"}},{"node":{"name":"tools","type":"tree"}}]}}}}}}

3.4.2 Library Microservice

- 47/98 - Copyright © 2022 - 2023 The INTO-CPS Association

FETCH A FILE FROM THE AVAILABLE FILES

This query receives directory path and send the file contents to user in response.

To check this query, create a file files/user2/data/welcome.txt with content of hello world .

The path refers to the file path to look at: For example, user1 looks at files of user1; user1/functions looks at contents of

functions/ directory.

GraphQL Request GraphQL Response HTTP Request HTTP Response

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

query {
 readFile(path: "user2/data/sample.txt") {
 repository {
 blobs {
 nodes {
 name
 rawBlob
 rawTextBlob
 }
 }
 }
 }
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

{
 "data": {
 "readFile": {
 "repository": {
 "blobs": {
 "nodes": [
 {
 "name": "sample.txt",
 "rawBlob": "hello world",
 "rawTextBlob": "hello world"
 }
]
 }
 }
 }
 }
}

1
2
3
4
5
6
7

POST /lib HTTP/1.1
Host: foo.com
Content-Type: application/json
Content-Length: 217
{
 "query":"query {\n readFile(path: \"user2/data/welcome.txt\") {\n repository {\n blobs {\n nodes {\n name\n rawBlob\n
rawTextBlob\n }\n }\n }\n }\n}"
}

1
2
3
4
5
6
7
8

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Connection: close
Content-Length: 134
Content-Type: application/json; charset=utf-8
Date: Wed, 27 Sep 2023 09:17:18 GMT
X-Powered-By: Express
{"data":{"readFile":{"repository":{"blobs":{"nodes":[{"name":"welcome.txt","rawBlob":"hello world","rawTextBlob":"hello world"}]}}}}}

3.4.2 Library Microservice

- 48/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.5 Digital Twins

3.5.1 Create a Digital Twin

The first step in digital twin creation is to use the available assets in your workspace. If you have assets / files in your computer

that need to be available in the DTaaS workspace, then please follow the instructions provided in library assets.

There are dependencies among the library assets. These dependencies are shown below.

A digital twin can only be created by linking the assets in a meaningful way. This relationship can be expressed using a

mathematical equation:

where D denotes data, M denotes models, F denotes functions, T denotes tools, denotes DT configuration and is a symbolic

notation for a digital twin itself. The expression denotes composition of DT from D,M,T and F assets. The indicates zero or one

more instances of an asset and indicates one or more instances of an asset.

The DT configuration specifies the relevant assets to use, the potential parameters to be set for these assets. If a DT needs to use

RabbitMQ, InfluxDB like services supported by the platform, the DT configuration needs to have access credentials for these

services.

This kind of generic DT definition is based on the DT examples seen in the wild. You are at liberty to deviate from this definition

of DT. The only requirement is the ability to run the DT from either commandline or desktop.

If you are stepping into the world of Digital Twins, you might not have distinct digital twin assets. You are likely to have one directory

of everything in which you run your digital twin. In such a case we recommend that you upload this monolithic digital twin into

digital_twin/your_digital_twin_name directory.

Example

The Examples repository contains a co-simulation setup for mass spring damper. This example illustrates the potential of using

co-simulation for digital twins.

Tip

3.5 Digital Twins

- 49/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS-examples

The file system contents for this example are:

The workspace/data/mass-spring-damper/ contains input and output data for the mass-spring-damper digital twin.

The two FMU models needed for this digital twin are in models/ directory.

The co-simulation digital twin needs Maestro co-simulation orchestrator. Since this is a reusable asset for all the co-simulation

based DTs, the tool has been placed in common/tools/ directory.

The actual digital twin configuration is specified in digital twins/mass-spring-damper directory. The co-simulation configuration is

specified in two json files, namely cosim.json and time.json . A small explanation of digital twin for its users can be placed in

digital twins/mass-spring-damper/README.md .

The launch program for this digital twin is in digital twins/mass-spring-damper/lifecycle/execute . This launch program runs the co-

simulation digital twin. The co-simulation runs till completion and then ends. The programs in digital twins/mass-spring-damper/

lifecycle are responsible for lifecycle management of this digital twin. The lifecycle page provides more explanation on these

programs.

A frequent question arises on the run time characteristics of a digital twin. The natural intuition is to say that a digital twin must

operate as long as its physical twin is in operation. If a digital twin runs for a finite time and then ends, can it be called a

digital twin? The answer is a resounding YES. The Industry 4.0 usecases seen among SMEs have digital twins that run for a

finite time. These digital twins are often run at the discretion of the user.

You can run this digital twin by,

Go to Workbench tools page of the DTaaS website and open VNC Desktop. This opens a new tab in your browser

A page with VNC Desktop and a connect button comes up. Click on Connect. You are now connected to the Linux Desktop of your

workspace.

Open a Terminal (black rectangular icon in the top left region of your tab) and type the following commands.

Download the example files by following the instructions given on examples overview.

Go to the digital twin directory and run

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

workspace/
 data/
 mass-spring-damper
 input/
 output/

 digital_twins/
 mass-spring-damper/
 cosim.json
 time.json
 lifecycle/
 analyze
 clean
 evolve
 execute
 save
 terminate
 README.md

 functions/
 models/
 MassSpringDamper1.fmu
 MassSpringDamper2.fmu

 tools/
 common/
 data/
 functions/
 models/
 tools/
 maestro-2.3.0-jar-with-dependencies.jar

Execution of a Digital Twin

1.

2.

3.

4.

5.

1
2

cd /workspace/examples/digital_twins/mass-spring-damper
lifecycle/execute

3.5.1 Create a Digital Twin

- 50/98 - Copyright © 2022 - 2023 The INTO-CPS Association

The last command executes the mass-spring-damper digital twin and stores the co-simulation output in data/mass-spring-damper/

output .

3.5.1 Create a Digital Twin

- 51/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.5.2 Digital Twin Lifecycle

The physical products in the real world have product lifecycle. A simplified four-stage product life is illustrated here.

A digital twin tracking the physical products (twins) need to track and evolve in conjunction with the corresponding physical

twin.

The possible activities undertaken in each lifecycle phases are illustrated in the figure.

(Ref: Minerva, R, Lee, GM and Crespi, N (2020) Digital Twin in the IoT context: a survey on technical features, scenarios and

architectural models. Proceedings of the IEEE, 108 (10). pp. 1785-1824. ISSN 0018-9219.)

Lifecycle Phases

The four phase lifecycle has been extended to a lifecycle with eight phases. The new phase names and the typical activities

undertaken in each phase are outlined in this section.

A DT lifecycle consists of explore, create, execute, save, analyse, evolve and terminate phases.

A digital twin faithfully tracking the physical twin lifecycle will have to support all the phases. It is also possible for digital twin

engineers to add more phases to digital they are developing. Thus it is important for the DTaaS software platform needs to

accommodate needs of different DTs.

A potential linear representation of the tasks undertaken in a digital twin lifecycle are shown here.

Phase Main Activities

explore selection of suitable assets based on the user needs and checking their compatibility for the purposes of

creating a DT.

create specification of DT configuration. If DT already exists, there is no creation phase at the time of reuse.

execute automated / manual execution of a DT based on its configuration. The DT configuration must checked

before starting the execution phase.

analyse checking the outputs of a DT and making a decision. The outputs can be text files, or visual dashboards.

evolve reconfigure DT primarily based on analysis.

save involves saving the state of DT to enable future recovery.

terminate stop the execution of DT.

3.5.2 Digital Twin Lifecycle

- 52/98 - Copyright © 2022 - 2023 The INTO-CPS Association

Again this is only a one possible pathway. Users are at liberty to alter the sequence of steps.

It is possible to map the lifecycle phases identified so far with the Build-Use-Share approach of the DTaaS software platform.

Even though not mandatory, having a matching coding structure makes it easy to for users to create and manage their DTs within

the DTaaS. It is recommended to have the following structure:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

workspace/
 digital_twins/
 digital-twin-1/
 lifecycle/
 analyze
 clean
 evolve
 execute
 save
 terminate

3.5.2 Digital Twin Lifecycle

- 53/98 - Copyright © 2022 - 2023 The INTO-CPS Association

A dedicated program exists for each phase of DT lifecycle. Each program can be as simple as a script that launches other

programs or sends messages to a live digital twin.

Example Lifecycle Scripts

Here are the example programs / scripts to manage three phases in the lifecycle of mass-spring-damper DT.

The execute phases uses the DT configuration, FMU models and Maestro tool to execute the digital twin. The script also stores

the output of cosimulation in /workspace/data/mass-spring-damper/output .

It is possible for a DT not to support a specific lifecycle phase. This intention can be specified with an empty script and a helpful

message if deemed necessary.

The lifecycle programs can call other programs in the code base. In the case of lifecycle/terminate program, it is calling another

script to do the necessary job.

1
2
3
4
5
6
7

#!/bin/bash
mkdir -p /workspace/data/mass-spring-damper/output
#cd ..
java -jar /workspace/common/tools/maestro-2.3.0-jar-with-dependencies.jar \

import -output /workspace/data/mass-spring-damper/output \
--dump-intermediate sg1 cosim.json time.json -i -vi FMI2 \
output-dir>debug.log 2>&1

1
2

#!/bin/bash
printf "operation is not supported on this digital twin"

1
2

#!/bin/bash
lifecycle/clean

3.5.2 Digital Twin Lifecycle

- 54/98 - Copyright © 2022 - 2023 The INTO-CPS Association

3.6 Examples

3.6.1 DTaaS Examples

There are some example digital twins created for the DTaaS software. Use these examples and follow the steps given in the

Examples section to experience features of the DTaaS software platform and understand best practices for managing digital

twins within the platform.

Copy Examples

The first step is to copy all the example code into your user workspace within the DTaaS. Use the given shell script to copy all the

examples into /workspace/examples directory.

Example List

The digital twins provided in examples vary in their complexity. It is best to use the examples in the following order.

Mass Spring Damper

Water Tank Fault Injection

Water Tank Model Swap

Desktop Robotti and RabbitMQ

DTaaS examples

1
2

wget https://raw.githubusercontent.com/INTO-CPS-Association/DTaaS-examples/main/getExamples.sh
bash getExamples.sh

1.

2.

3.

4.

3.6 Examples

- 55/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS-examples

3.6.2 Mass Spring Damper

Overview

The mass spring damper digital twin (DT) comprises two mass spring dampers and demonstrates how a co-simulation based DT

can be used within DTaaS.

Example Diagram

Example Structure

There are two simulators included in the study, each representing a mass spring damper system. The first simulator calculates

the mass displacement and speed of for a given force acting on mass . The second simulator calculates force given a

displacement and speed of mass . By coupling these simulators, the evolution of the position of the two masses is computed.

3.6.2 Mass Spring Damper

- 56/98 - Copyright © 2022 - 2023 The INTO-CPS Association

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

The co-sim.json and time.json are two DT configuration files used for executing the digital twin. You can change these two files to

customize the DT to your needs.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 17 in the workspace.

EXECUTE

Run the the Digital Twin. Since this is a co-simulation based digital twin, the Maestro co-simulation tool executes co-simulation

using the two FMU models.

Examine the results

The results can be found in the /workspace/examples/data/mass-spring-damper/output directory.

You can also view run logs in the /workspace/examples/digital_twins/mass-spring-damper.

TERMINATE PHASE

Terminate to clean up the debug files and co-simulation output files.

Asset Type Names of Assets Visibility Reuse in Other Examples

Models MassSpringDamper1.fmu Private Yes

MassSpringDamper2.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/mass-spring-damper/output directory

Clean Clears run logs and outputs

1 cd /workspace/examples/digital_twins/mass-spring-damper

1 chmod +x lifecycle/create

1 lifecycle/create

1 lifecycle/execute

1 lifecycle/terminate

3.6.2 Mass Spring Damper

- 57/98 - Copyright © 2022 - 2023 The INTO-CPS Association

References

More information about co-simulation techniques and mass spring damper case study are available in:

The source code for the models used in this DT are available in mass spring damper github repository.

1
2

Gomes, Cláudio, et al. "Co-simulation: State of the art."
arXiv preprint arXiv:1702.00686 (2017).

3.6.2 Mass Spring Damper

- 58/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example-mass_spring_damper

3.6.3 Water Tank Fault Injection

Overview

This example shows a fault injection (FI) enabled digital twin (DT). A live DT is subjected to simulated faults received from the

environment. The simulated faults is specified as part of DT configuration and can be changed for new instances of DTs.

In this co-simulation based DT, a watertank case-study is used; co-simulation consists of a tank and controller. The goal of which

is to keep the level of water in the tank between Level-1 and Level-2 . The faults are injected into output of the water tank

controller (Watertankcontroller-c.fmu) from 12 to 20 time units, such that the tank output is closed for a period of time,

leading to the water level increasing in the tank beyond the desired level (Level-2).

Example Diagram

3.6.3 Water Tank Fault Injection

- 59/98 - Copyright © 2022 - 2023 The INTO-CPS Association

Example Structure

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

The multimodelFI.json and simulation-config.json are two DT configuration files used for executing the digital twin. You can change

these two files to customize the DT to your needs.

 The faults are defined in wt_fault.xml.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

Asset Type Names of Assets Visibility Reuse in Other Examples

Models watertankcontroller-c.fmu Private Yes

singlewatertank-20sim.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/water_tank_FI/output directory

Clean Clears run logs and outputs

1 cd /workspace/examples/digital_twins/water_tank_FI

1 chmod +x lifecycle/create

3.6.3 Water Tank Fault Injection

- 60/98 - Copyright © 2022 - 2023 The INTO-CPS Association

CREATE

Installs Open Java Development Kit 17 and pip dependencies. The pandas and matplotlib are the pip dependencies installated.

EXECUTE

Run the co-simulation. Generates the co-simulation output.csv file at /workspace/examples/data/water_tank_FI/output .

ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/water_tank_FI/output/plots/ .

Examine the results

The results can be found in the /workspace/examples/data/water_tank_FI/output directory.

You can also view run logs in the /workspace/examples/digital_twins/water_tank_FI.

TERMINATE PHASE

Clean up the temporary files and delete output plot

References

More details on this case-study can be found in the paper:

The fault-injection plugin is an extension to the Maestro co-orchestration engine that enables injecting inputs and outputs of

FMUs in an FMI-based co-simulation with tampered values. More details on the plugin can be found in fault injection git

repository. The source code for this example is also in the same github repository in a example directory.

1 lifecycle/create

1 lifecycle/execute

1 lifecycle/analyze

1 lifecycle/terminate

1
2
3
4

M. Frasheri, C. Thule, H. D. Macedo, K. Lausdahl, P. G. Larsen and
L. Esterle, "Fault Injecting Co-simulations for Safety,"
2021 5th International Conference on System Reliability and Safety (ICSRS),
Palermo, Italy, 2021.

3.6.3 Water Tank Fault Injection

- 61/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fault-injection-maestro
https://github.com/INTO-CPS-Association/fault-injection-maestro/blob/development/fi_example/README.md

3.6.4 Water Tank Model Swap

Overview

This example shows multi-stage execution and dynamic reconfiguration of a digital twin (DT). Two features of DTs are

demonstrated here:

Fault injection into live DT

Dynamic auto-reconfiguration of live DT

The co-simulation methodology is used to construct this DT.

Example Structure

•

•

3.6.4 Water Tank Model Swap

- 62/98 - Copyright © 2022 - 2023 The INTO-CPS Association

Configuration of assets

This example uses four models and one tool. The specific assets used are:

This DT has many configuration files. The DT is executed in two stages. There exist separate DT configuration files for each

stage. The following table shows the configuration files and their purpose.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the permission of files you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 17 and pip dependencies. The matplotlib pip package is also installated.

EXECUTE

This DT has two-stage execution. In the first-stage, a co-simulation is executed. The Watertankcontroller-c.fmu and

Singlewatertank-20sim.fmu models are used to execute the DT. During this stage, faults are injected into one of the models

(Watertankcontroller-c.fmu) and the system performance is checked.

Asset Type Names of Assets Visibility Reuse in Other Examples

Models Watertankcontroller-c.fmu Private Yes

Singlewatertank-20sim.fmu Private Yes

Leak_detector.fmu Private No

Leak_controller.fmu Private No

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Configuration file name Execution Stage Purpose

mm1. json stage-1 DT configuration

wt_fault.xml, FaultInject.mabl stage-1 faults injected into DT during stage-1

mm2.json stage-2 DT configuration

simulation-config.json Both stages Configuration for specifying DT execution time and output logs

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/water_tank_swap/output directory

Analyze Process the co-simulation output and produce plots

Clean Clears run logs, outputs and plots

1 cd /workspace/examples/digital_twins/water_tank_swap

1 chmod +x lifecycle/create

1 lifecycle/create

3.6.4 Water Tank Model Swap

- 63/98 - Copyright © 2022 - 2023 The INTO-CPS Association

In the second-stage, another co-simulation is run in which three FMUs are used. The FMUs used are: watertankcontroller,

singlewatertank-20sim, and leak_detector. There is an in-built monitor in the Maestro tool. This monitor is enabled during the

stage and a swap condition is set at the beginning of the second-stage. When the swap condition is satisfied, the Maestro swaps

out Watertankcontroller-c.fmu model and swaps in Leakcontroller.fmu model. This swapping of FMU models demonstrates the

dynamic reconfiguration of a DT.

The end of execution phase generates the co-simulation output.csv file at /workspace/examples/data/water_tank_swap/output .

ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/water_tank_FI/output/plots/ .

Examine the results

The results can be found in the workspace/examples/data/water_tank_swap/output directory.

You can also view run logs in the workspace/examples/digital_twins/water_tank_swap.

TERMINATE PHASE

Clean up the temporary files and delete output plot

References

The complete source of this example is available on model swap github repository.

The runtime model (FMU) swap mechanism demonstrated by the experiment is detailed in the paper:

The runtime reconfiguration of co-simulation by modifying the Functional Mockup Units (FMUs) used is further detailed in the

paper:

1 lifecycle/execute

1 lifecycle/analyze

1 lifecycle/terminate

1
2

Ejersbo, Henrik, et al. "fmiSwap: Run-time Swapping of Models for
Co-simulation and Digital Twins." arXiv preprint arXiv:2304.07328 (2023).

1
2
3
4

Ejersbo, Henrik, et al. "Dynamic Runtime Integration of
New Models in Digital Twins." 2023 IEEE/ACM 18th Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, 2023.

3.6.4 Water Tank Model Swap

- 64/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/hejersbo/dtaas-wt-swap

3.6.5 Desktop Robotti with RabbitMQ

Overview

This example demonstrates bidirectional communication between a mock physical twin and a digital twin of a mobile robot

(Desktop Robotti). The communication is enabled by RabbitMQ Broker.

Example Structure

The mock physical twin of mobile robot is created using two python scripts

data/drobotti_rmqfmu/rmq-publisher.py

data/drobotti_rmqfmu/consume.py

The mock physical twin sends its physical location in (x,y) coordinates and expects a cartesian distance calculated from digital

twin.

1.

2.

3.6.5 Desktop Robotti with RabbitMQ

- 65/98 - Copyright © 2022 - 2023 The INTO-CPS Association

The rmq-publisher.py reads the recorded (x,y) physical coordinates of mobile robot. The recorded values are stored in a data file.

These (x,y) values are published to RabbitMQ Broker. The published (x,y) values are consumed by the digital twin.

The consume.py subscribes to RabbitMQ Broker and waits for the calculated distance value from the digital twin.

The digital twin consists of a FMI-based co-simulation, where Maestro is used as co-orchestration engine. In this case, the co-

simulation is created by using two FMUs - RMQ FMU (rabbitmq-vhost.fmu) and distance FMU (distance-from-zero.fmu). The

RMQ FMU receives the (x,y) coordinates from rmq-publisher.py and sends calculated distance value to consume.py. The RMQ

FMU uses RabbitMQ broker for communication with the mock mobile robot, i.e., rmq-publisher.py and consume.py. The distance

FMU is responsible for calculating the distance between (0,0) and (x,y). The RMQ FMU and distance FMU exchange values

during co-simulation.

3.6.5 Desktop Robotti with RabbitMQ

- 66/98 - Copyright © 2022 - 2023 The INTO-CPS Association

Digital Twin Configuration

This example uses two models, one tool, one data, and two scripts to create mock physical twin. The specific assets used are:

This DT has many configuration files. The coe.json and multimodel.json are two DT configuration files used for executing the digital

twin. You can change these two files to customize the DT to your needs.

The RabbitMQ access credentials need to be provided in multimodel.json . The rabbitMQ-credentials.json provides RabbitMQ access

credentials for mock PT python scripts. Please add your credentials in both these files.

Lifecycle Phases

Run the example

To run the example, change your present directory.

If required, change the execute permission of lifecycle scripts you need to execute, for example:

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 17 in the workspace. Also install the required python pip packages for rmq-publisher.py and

consume.py scripts.

EXECUTE

Run the python scripts to start mock physical twin. Also run the the Digital Twin. Since this is a co-simulation based digital twin,

the Maestro co-simulation tool executes co-simulation using the two FMU models.

Examine the results

The results can be found in the /workspace/examples/digital_twins/drobotti_rmqfmu directory.

Asset Type Names of Assets Visibility Reuse in Other Examples

Models distance-from-zero.fmu Private No

rmq-vhost.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

Data drobotti_playback_data.csv private No

Mock PT rmq-publisher.py Private No

consume.py Private No

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool and pip packages for python scripts

Execute Runs both DT and mock PT

Clean Clears run logs and outputs

1 cd /workspace/examples/digital_twins/drobotti_rmqfmu

1 chmod +x lifecycle/create

1 lifecycle/create

1 lifecycle/execute

3.6.5 Desktop Robotti with RabbitMQ

- 67/98 - Copyright © 2022 - 2023 The INTO-CPS Association

TERMINATE PHASE

Terminate to clean up the debug files and co-simulation output files.

References

The RabbitMQ FMU github repository contains complete documentation and source code of the rmq-vhost.fmu.

More information about the case study is available in:

1 lifecycle/terminate

1
2

Frasheri, Mirgita, et al. "Addressing time discrepancy between digital
and physical twins." Robotics and Autonomous Systems 161 (2023): 104347.

3.6.5 Desktop Robotti with RabbitMQ

- 68/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fmu-rabbitmq

4. Frequently Asked Questions

4.1 Abreviations

4.2 General Questions

DTaaS is software platform on which you can create and run digital twins. Please see the features page to get a sense of the things

you can do in DaaS.

The licensed software are not available on the software platform. But users have private workspaces which are based on Linux-based

xfce Desktop environment. Users can install software in their workspaces. The licensed software installed by one user is not available

to another user.

Term Full Form

DT Digital Twin

DTaaS Digital Twin as a Service

PT Physical Twin

What is DTaaS?

Are there any Key Performance / Capability Indicators for DTaaS?

Key Performance Indicator Value

Processor Two AMD EPYC 7443 24-Core Processors

Maximum Storage Capacity 4TB SSD, RAID 0 configuration

Storage Type File System

Maximum file size 10 GB

Data transfer speed 100 Mbps

Data Security Yes

Data Privacy Yes

Redundancy None

Availability It is a matter of human resources. If you have human

resources to maintain DTaaS round the clock,

upwards 95% is easily possible.

Do you provide licensed software like Matlab?

4. Frequently Asked Questions

- 69/98 - Copyright © 2022 - 2023 The INTO-CPS Association

4.3 Digital Twin Models

DTaaS is not a model creation tool. You can put model creation tool inside DTaaS and create new models. The DTaaS itself does not

create digital twin models but it can help users create digital twin models. You can run Linux desktop / terminal tools inside the

DTaaS. So you can create models inside DTaaS and run them using tools that can run in Linux. The Windows only tools can not run in

DTaaS.

Well, DTaaS by itself does not produce any models. DTaaS only provides a platform and an ecosystem of services to facilitate digital

twins to be run as services. Since each user has a Linux OS at their disposal, they can also run digital twins that have graphical

interface. In summary, DTaaS is neither a modeling nor simulation tool. If you need these kinds of tools, you need to bring them onto

the platform. For example, if you need Matlab for your work, you need to bring he licensed Matlab software.

Yes, you are right

The DTaaS as such is agnostic to the kind of models you use. DTaaS can run all kinds of models. This includes behavioral and data

models. As long as you have models and the matching solvers that can run in Linux OS, you are good to go in DTaaS. In some cases,

models and solvers (tools) are bundled together to form monolithic DTs. The DTaaS does not limit you from running such DTs as well.

DTaaS does not provide dedicated solvers. But if you can install a solver in your workspace, then you don't need the platform to

provide one.

Currently No. We are looking for users needing this capability. If you have concrete requirements and an example, we can

discuss a way of realizing it in DTaaS.

4.4 Communication Between Physical Twin and Digital Twin

The real measurements are done at physical twin which are then communicated to the digital twin. Any digital twin platform like

DTaaS can only facilitate this communication of these measurements from physical twin. The DTaaS provides InfluxDB, RabbitMQ

and Mosquitto services for this purpose. These three are probably most widely used services for digital twin communication. Having

said that, DTaaS allows you to utilize other communication technologies and services hosted elsewhere on the Internet.

Can DTaaS create new DT models?

How can DTaaS help to design geometric model? Does it support 3D modeling and simulation?

Commercial DT platforms in market provide modelling and simulation alongside integration and UI. DTaas is not

able to do any modelling or simulation on its own like other commercial platforms. Is this a correct understanding?

Can DTaaS support only the information models (or behavioral models) or some other kind of models?

Does it support XML-based representation and ontology representation?

How would you measure a physical entity like shape, size, weight, structure, chemical attributes etc. using DTaaS?

Any specific technology used in this case?

4.3 Digital Twin Models

- 70/98 - Copyright © 2022 - 2023 The INTO-CPS Association

DTaaS can not understand the static or dynamic nature of data. It can facilitate storing names, units and any other text description of

interesting quantities (weight of batter, voltage output etc). It can also store the data being sent by the physical twin. The distinction

between static and dynamic data needs to be made by the user. Only metadata of the data can reveal such more information about

the nature of data. A tool can probably help in very specific cases, but you need metadata. If there is a human being making this

distinction, then the need for metadata goes down but does not completely go away. In some of the DT platforms supported by

manufacturers, there is a tight integration between data and model. In this case, the tool itself is taking care of the metadata. The

DTaaS is a generic platform which can support execution of digital twins. If a tool can be executed on a Linux desktop / commandline,

the tool can be supported within DTaaS. The tool (ex. Matlab) itself can take care of the metadata requirements.

At a very abstract level, there is a communication from physical entity to digital entity and back to physical entity. How this

communication should happen is decided by the person designing the digital entity. The DTaaS can provide communication services

that can help you do this communication with relative ease. You can use InfluxDB, RabbitMQ and Mosquitto services hosted on

DTaaS for two communication between digital and physical entities.

4.5 Data Management

The DTaaS provids InfluxDB, RabbitMQ, MQTT services. Both the physical twin and digital twin can utilize these protocols for

communication. The IoT (time-series) data can be collected using InfluxDB and MQTT broker services. There is a user interface for

InfluxDB which can be used to analyze the data collected. Users can also manually upload their data files into DTaaS.

InfluxDB, RabbitMQ, MQTT and anything else that can be used from Cloud service providers.

You can store information from multiple sources. The existing InfluxDB services hosted on DTaaS already has a dedicated Influx /

Flux query language for doing sensor fusion, analysis and inferences.

Graphical, geometric and images. If you need specific licensed software for the visualization, you will have to bring the license for it.

DTaaS does not support AR/VR.

Yes

How a real-time data can be differed from static data and what is the procedure to identify dynamic data? Is there

any UI or specific tool used here?

How can DTaaS control the physical entity? Which technologies it uses for controlling the physical world?

Does DTaaS support data collection from different sources like hardware, software and network? Is there any user

interface or any tracking instruments used for data collection?

Which transmission protocol does DTaaS allow?

Does DTaaS support multisource information and combined multi sensor input data? Can it provide analysis and

decision-supporting inferences?

Which kinds of visualization technologies DTaaS can support (e.g. graphical, geometry, image, VR/AR

representation)?

Can DTaaS collect data directly from sensors?

4.5 Data Management

- 71/98 - Copyright © 2022 - 2023 The INTO-CPS Association

Yes

4.6 Platform Native Services on DTaaS Platform

This is the job of a digital twin. If you have a ready to use digital twin that does the job, DTaaS allows others to use your solution.

4.7 Comparison with other DT Platforms

Here is a qualitative comparison of different DT integration platforms:

Legend: high performance (H), mid performance (M) and low performance (L)

Adopted by Tanusree Roy from Table 4 and 5 of the following paper.

Ref: Naseri, F., Gil, S., Barbu, C., Cetkin, E., Yarimca, G., Jensen, A. C., ... & Gomes, C. (2023). Digital twin of electric vehicle battery

systems: Comprehensive review of the use cases, requirements, and platforms. Renewable and Sustainable Energy Reviews, 179,

113280.

Is DTaaS able to transmit data to cloud in real time?

Is DTaaS able to detect the anomalies about-to-fail components and prescribe solutions?

All the DT platforms seem to provide different features. Is there a comparison chart?

DT Platforms License DT

Development

Process

Connectivity Security Processing

power,

performance

and

Scalability

Data

Storage

Visualization Modeling

and

Simulation

Microsoft

Azure DT

Commercial

Cloud

H H H M H H H

AWS IOT

Greengrass

Open

source

commercial

H H H M H H H

Eclipse Ditto Open

source

M H M H H L L

Asset

Administration

Shell

Open

source

H H L H M L M

PTC

Thingworx

Commercial H H H H H M M

GE Predix Commercial M H H M L M L

AU's DTaaS Open

source

H H L L M M M

4.6 Platform Native Services on DTaaS Platform

- 72/98 - Copyright © 2022 - 2023 The INTO-CPS Association

The fundamental confusion comes from the fact that different DT platforms (Azure DT, GE Predix) provide different kind of DT

capabilities. You can run all kinds of models natively in GE Predix. In fact you can run models even next to (on) PTs using GE Predix.

But you cannot natively do that in Azure DT service. You have to do the leg work of integrating with other Azure services or third-

party services to get the kind of capabilities that GE Predix natively provides in one interface. The takeaway is that we pick horses

for the courses.

4.8 Create Assets

The core feature of DTaaS software is to help users create DTs from assets already available in the library.

 However, it is possible for users to take advantage of services

available in their workspace to install asset authoring tools in their own workspace. These authoring tools can then be used to create

and publish new assets. User workspaces are private and are not shared with other users. Thus any licensed software tools installed

in their workspace is only available to them.

4.9 GDPR Concerns

The DTaaS software platform does not store any personal information of users. It only stores username to identify users and these

usernames do not contain enough information to deduce the true identify of users.

The default installation requires a HTTPS terminating reverse proxy server from user to the DTaaS software installation. The

administrators of DTaaS software can also install HTTPS certificates into the application. The codebase can generate HTTPS

application and the users also have the option of installing their own certificates obtained from certification agencies such as

LetsEncrypt.

All the comparisons between DT platforms seems so confusing. Why?

Can DTaaS be used to create new DT assets?

Does your platform adhere to GDPR compliance standards? If so, how?

Which security measures are deployed? How is data encrypted (if exists)?

4.8 Create Assets

- 73/98 - Copyright © 2022 - 2023 The INTO-CPS Association

The current installation of DTaaS software runs on Aarhus University servers. The university network offers firewall access control to

servers so that only permitted user groups have access to the network and physical access to the server.

There is a two-level authentication mechanism in place in each default installation of DTaaS. The first-level is HTTP basic

authentication over secure HTTPS connection. The second-level is the OAuth PKCE authentication flow for each user. The OAuth

authentication is provider by a Gitlab instance. The DTaaS does not store the account and authentication information of users.

The platform does not store personal data of users.

There are two roles for users on the platform. One is the administrator and the other one is user. The user roles are managed by the

administrator.

What security measures does your cloud provider offer?

How is user access controlled and authenticated?

Does you platform manage personal data? How is data classified and tagged based on the sensitivity? Who has

access to the critical data?

How are identities and roles managed within the platform?

4.9 GDPR Concerns

- 74/98 - Copyright © 2022 - 2023 The INTO-CPS Association

5. Developer

5.1 Developers Guide

This guide is to help developers get familiar with the project. Please see developer-specific Slides, Video, and Research paper.

5.1.1 Development Environment

Ideally, developers should work on Ubuntu/Linux. Other operating systems are not supported inherently and may require

additional steps.

To start with, install the required software and git-hooks.

The git-hooks will ensure that your commits are formatted correctly and that the tests pass before you push the commits to

remote repositories.

Be aware that the tests may take a long time to run. If you want to skip the tests or formatting, you can use the --no-verify flag on

git commit or git push . Please use this option with care.

There is a script to download all the docker containers used in the project. You can download them using

 The docker images are large and are likely to consume about 5GB of bandwidth and 15GB of space. You will have to download

the docker images on a really good network.

5.1.2 Development Workflow

To manage collaboration by multiple developers on the software, a development workflow is in place. Each developer should

follow these steps:

Fork of the main repository into your github account.

Setup Code Climate and Codecov for your fork. The codecov does not require secret token for public repositories.

Install git-hooks for the project.

Use Fork, Branch, PR workflow.

Work in your fork and open a PR from your working branch to your feature/distributed-demo branch. The PR will run all the github

actions, code climate and codecov checks.

Resolve all the issues identified in the previous step.

If you have access to the integration server, try your working branch on the integration server.

Once changes are verified, a PR should be made to the feature/distributed-demo branch of the upstream DTaaS repository.

The PR will be merged after checks by either the project administrators or the maintainers.

Remember that every PR should be meaningful and satisfies a well-defined user story or improve the code quality.

1
2

bash script/env.sh
bash script/configure-git-hooks.sh

1 bash script/docker.sh

1.

2.

3.

4.

5.

6.

7.

8.

9.

5. Developer

- 75/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/DTaaS-overview.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/DTaaS-overview.mp4
https://arxiv.org/abs/2305.07244
https://docs.codeclimate.com/docs/getting-started-with-code-climate
https://docs.codecov.com/docs/quick-start
https://gun.io/news/2017/01/how-to-github-fork-branch-and-pull-request/
https://github.com/INTO-CPS-Association/DTaaS/wiki/DTaaS-Integration-Server
https://github.com/into-cps-association/DTaaS

5.1.3 Code Quality

The project code qualities are measured based on:

Linting issues identified by Code Climate

Test coverage report collected by Codecov

Successful github actions

Code Climate

Code Climate performs static analysis, linting and style checks. Quality checks are performed by codeclimate are to ensure the

best possible quality of code to add to our project.

While any new issues introduced in your code would be shown in the PR page itself, to address any specific issue, you can visit

the issues or code section of the codeclimate page.

It is highly recommended that any code you add does not introduce new quality issues. If they are introduced, they should be

fixed immediately using the appropriate suggestions from Code Climate, or in worst case, adding a ignore flag (To be used with

caution).

Codecov

Codecov keeps track of the test coverage for the entire project. For information about testing and workflow related to that,

please see the testing page.

Github Actions

The project has multiple github actions defined. All PRs and direct code commits must have successful status on github actions.

•

•

•

5.1.3 Code Quality

- 76/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://codeclimate.com/github/INTO-CPS-Association/DTaaS
https://codecov.io/gh/INTO-CPS-Association/DTaaS
https://github.com/INTO-CPS-Association/DTaaS/actions
https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/.github/workflows

5.2 System

5.2.1 System Overview

User Requirements

The DTaaS software platform users expect a single platform to support the complete DT lifecycle. To be more precise, the

platform users expect the following features:

Author – create different assets of the DT on the platform itself. This step requires use of some software frameworks and tools

whose sole purpose is to author DT assets.

Consolidate – consolidate the list of available DT assets and authoring tools so that user can navigate the library of reusable

assets. This functionality requires support for discovery of available assets.

Configure – support selection and configuration of DTs. This functionality also requires support for validation of a given

configuration.

Execute – provision computing infrastructure on demand to support execution of a DT.

Explore – interact with a DT and explore the results stored both inside and outside the platform. Exploration may lead to analytical

insights.

Save – save the state of a DT that’s already in the execution phase. This functionality is required for on demand saving and re-

spawning of DTs.

What-if analysis – explore alternative scenarios to (i) plan for an optimal next step, (ii) recalibrate new DT assets, (iii) automated

creation of new DTs or their assets; these newly created DT assets may be used to perform scientifically valid experiments.

Share – share a DT with other users of their organisation.

System Architecture

The figure shows the system architecture of the the DTaaS software platform.

1.

2.

3.

4.

5.

6.

7.

8.

5.2 System

- 77/98 - Copyright © 2022 - 2023 The INTO-CPS Association

SYSTEM COMPONENTS

The users interact with the software platform using a website. The gateway is a single point of entry for direct access to the

platform services. The gateway is responsible for controlling user access to the microservice components. The service mesh

enables discovery of microservices, load balancing and authentication functionalities.

In addition, there are microservices for catering to author, store, explore, configure, execute and scenario analysis requirements.

The microservices are complementary and composable; they fulfil core requirements of the system.

The microservices responsible for satisfying the user requirements are:

The security microservice implements role-based access control (RBAC) in the platform.

The accounting microservice is responsible for keeping track of the platform, DT asset and infrastructure usage. Any licensing,

usage restrictions need to be enforced by the accounting microservice. Accounting is a pre-requisite to commercialisation of the

platform. Due to significant use of external infrastructure and resources via the platform, the accounting microservice needs to

interface with accounting systems of the external services.

The data microservice is a frontend to all the databases integrated into the platform. A time-series database and a graph

database are essential. These two databases store timeseries data from PT, events on PT/DT, commands sent by DT to PT. The PTs

uses these databases even when their respective DTs are not in the execute phase.

The visualisation microservice is again a frontend to visualisation software that are natively supported inside the platform. Any

visualisation software running either on external systems or on client browsers do not need to interact with this microservice. They

can directly use the data provided by the data microservice.

C4 Architectural Diagrams

The C4 architectural diagrams of the DTaaS software are presented here.

1.

2.

3.

4.

5.2.1 System Overview

- 78/98 - Copyright © 2022 - 2023 The INTO-CPS Association

LEVEL 1

This Level 1 diagram only shows the users and the roles they play in the DTaaS software.

LEVEL 2

This simplified version of Level 2 diagram shows the software containers of the DTaaS software.

5.2.1 System Overview

- 79/98 - Copyright © 2022 - 2023 The INTO-CPS Association

If you are interested, please take a look at the detailed diagram.

Please note that the given diagram only covers DT Lifecycle, Reusable Assets and Execution Manager.

Mapping

A mapping of the C4 level 2 containers to components identified in the system architecture is also available in the table.

System Component Container(s)

Gateway Traefik Gateway

Unified Interface React Webapplication

Reusable Assets Library Microservice

Data MQTT, InfluxDB, and RabbitMQ (not shown in the C4 Level 2 diagram)

Visualization InfluxDB (not shown in the C4 Level 2 diagram)

DT Lifecycle DT Lifecycle Manager and DT Configuration Validator

Security Gitlab OAuth

Accounting None

Execution Manager Execution Manager

5.2.1 System Overview

- 80/98 - Copyright © 2022 - 2023 The INTO-CPS Association

C4-L2_diagram_detailed.png
https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/servers/config/gateway#the-gateway-server

5.2.2 Current Status

The DTaaS software platform is currently under development. Crucial system components are in place with ongoing development

work focusing on increased automation and feature enhancement. The figure below shows the current status of the development

work.

 User Security

There is authentication mechanisms in place for the react website and the Traefik gateway.

The react website component uses Gitlab for user authentication using OAuth protocol.

GATEWAY AUTHENTICATION

The Traefik gateway has HTTP basic authentication enabled by default. This authentication on top of HTTPS connection can

provide a good protection against unauthorized use.

Please note that HTTP basic authentication over insecure non-TLS is insecure.

There is also a possibility of using self-signed mTLS certificates. The current security functionality is based on signed Transport

Layer Security (TLS) certificates issued to users. The TLS certificate based mutual TLS (mTLS) authentication protocol provides

better security than the usual username and password combination. The mTLS authentication takes place between the users

browser and the platform gateway. The gateway federates all the backend services. The service discovery, load balancing, and

health checks are carried by the gateway based on a dynamic reconfiguration mechanism.

The mTLS is not enabled in the default install. Please use the scripts in ssl/ directory to generate the required certificates for users

and Traefik gateway.

Warning

Note

5.2.2 Current Status

- 81/98 - Copyright © 2022 - 2023 The INTO-CPS Association

 User Workspaces

All users have dedicated dockerized-workspaces. These docker-images are based on container images published by mltooling

group.

Thus DT experts can develop DTs from existing DT components and share them with other users. A file server has been setup to

act as a DT asset repository. Each user gets space to store private DT assets and also gets access to shared DT assets. Users can

synchronize their private DT assets with external git repositories. In addition, the asset repository transparently gets mapped to

user workspaces within which users can perform DT lifecycle operations. There is also a library microservice which in the long-

run will replace the file server.

Users can run DTs in their workspaces and also permit remote access to other users. There is already shared access to internal

and external services. With these two provisions, users can treat live DTs as service components in their own software systems.

 Platform Services

There are four external services integrated with the DTaaS software platform. They are: InfluxDB, Grafana, RabbitMQ and

MQTT.

These services can be used by DTs and PTs for communication, storing and visualization of data. There can also be monitoring

services setup based on these services.

Development Priorities

The development priorities for the DTaaS software development team are:

DT Runner (API Interface to DT)

Multi-user and microservice security

Increased automation of installation procedures

DT Configuration DSL ín the form of YAML schema

UI for DT creation

DT examples

Your contributions and collaboration are highly welcome.

•

•

•

•

•

•

5.2.2 Current Status

- 82/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/ml-tooling/ml-workspace
https://github.com/ml-tooling/ml-workspace
https://github.com/influxdata/influxdb
https://github.com/grafana/grafana
https://github.com/rabbitmq/rabbitmq-server
https://github.com/eclipse/mosquitto
https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/servers/execution/runner

5.3 Components

5.3.1 React Website

The Website is how the end-users interact with the software platform. The website is being developed as a React single page web

application.

A dependency graph for the entire codebase of the react application is:

Dependency Graphs

The figures are the dependency graphs generated from the code.

SRC DIRECTORY

AppProvider.tsx

route/auth/AuthProvider.tsx

store/store.ts

util/auth/useOidcConfig.ts

store/menu.slice.ts

store/auth.slice.ts

components/Iframe.tsx

components/LinkButtons.tsx

components/LinkIconsLib.tsx

util/envUtil.ts

components/tab/TabComponent.tsx

components/tab/subcomponents/TabRender.tsx

components/tab/subcomponents/TabStyles.ts

index.tsx

page/LayoutPublic.tsx

route/auth/Account.tsx

route/auth/PrivateRoute.tsx

route/auth/Signin.tsx

route/digitaltwins/DigitalTwins.tsx
route/library/Library.tsx

route/workbench/Workbench.tsx

page/Footer.tsx

page/Layout.tsx

route/auth/AccountTabs.tsx

route/auth/WaitAndNavigate.tsx

route/digitaltwins/DigitalTwinTabData.ts

util/auth/Authentication.ts

route/library/LibraryTabData.ts

page/DrawerComponent.tsx

page/DrawerHeaderComponent.tsx

page/MenuItems.tsx

page/MenuToolbar.tsx

page/Menu.tsx

page/Title.tsx

route/IData.ts

5.3 Components

- 83/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/client#readme

TEST DIRECTORY

../src/components/Iframe.tsx

../src/components/tab/TabComponent.tsx

../src/components/tab/subcomponents/TabRender.tsx

../src/components/tab/subcomponents/TabStyles.ts

../src/page/DrawerComponent.tsx

../src/page/DrawerHeaderComponent.tsx

../src/page/MenuItems.tsx

../src/page/MenuToolbar.tsx

../src/util/auth/Authentication.ts

../src/page/Footer.tsx

../src/page/Layout.tsx

../src/page/Menu.tsx

../src/store/menu.slice.ts

../src/store/store.ts

../src/store/auth.slice.ts

../src/util/envUtil.ts

../src/route/IData.ts

../src/route/auth/AuthProvider.tsx

../src/util/auth/useOidcConfig.ts

../src/route/auth/PrivateRoute.tsx

../src/route/auth/WaitAndNavigate.tsx

../src/route/library/Library.tsx

../src/route/library/LibraryTabData.ts

e2e/playwright/Auth.test.ts

e2e/playwright/Links.ts

e2e/playwright/Menu.test.ts

e2e/playwright/auth.setup.ts

integration/authRedux.test.tsx

unitTests/testUtils.tsx

testUtil.ts

unitTests/Components/Iframe.test.tsx

unitTests/Components/Linkbuttons.test.tsx

unitTests/Components/PrivateRoute.test.tsx

unitTests/Components/TabComponent.test.tsx

unitTests/Page/Layout.test.tsx

unitTests/Page/page.testUtils.tsx

unitTests/Page/LayoutPublic.test.tsx

unitTests/Routes/DigitalTwins.test.tsx

unitTests/__mocks__/global_mocks.ts

unitTests/Routes/Library.test.tsx

unitTests/Routes/SignIn.test.tsx

unitTests/Routes/Workbench.test.tsx

unitTests/Util/Store.test.ts

unitTests/Util/envUtil.test.ts

unitTests/__mocks__/component_mocks.tsx

unitTests/__mocks__/page_mocks.tsx

unitTests/auth/AuthProvider.test.tsx

unitTests/jest.setup.ts

5.3.1 React Website

- 84/98 - Copyright © 2022 - 2023 The INTO-CPS Association

5.3.2 Library Microservice

The Library Microservices - provides users with access to files in user workspaces via API. This microservice will interface with

local file system and Gitlab to provide uniform Gitlab-compliant API access to files.

This microservice is still under heavy development. It is still not a good replacement for file server we are using now.

Architecture and Design

The C4 level 2 diagram of this microservice is:

The GraphQL API provided by the library microservice shall be compliant with the Gitlab GraphQL service.

UML Diagrams

CLASS DIAGRAM

Warning

classDiagram
 class FilesResolver {

5.3.2 Library Microservice

- 85/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/servers/lib#readme

SEQUENCE DIAGRAM

 -filesService: IFilesService
 +listDirectory(path: string): Promise<Project>
 +readFile(path: string): Promise<Project>
 }

 class FilesServiceFactory {
 -configService: ConfigService
 -gitlabFilesService: GitlabFilesService
 -localFilesService: LocalFilesService
 +create(): IFilesService
 }

 class GitlabFilesService {
 -configService: ConfigService
 -parseArguments(path: string): Promise<domain: string; parsedPath: string>
 -sendRequest(query: string): Promise<Project>
 -executeQuery(path: string, getQuery: QueryFunction): Promise<Project>
 +listDirectory(path: string): Promise<Project>
 +readFile(path: string): Promise<Project>
 }

 class LocalFilesService {
 -configService: ConfigService
 -getFileStats(fullPath: string, file: string): Promise<Project>
 +listDirectory(path: string): Promise<Project>
 +readFile(path: string): Promise<Project>
 }

 class ConfigService {
 +get(propertyPath: string): any
 }

 class IFilesService{
 listDirectory(path: string): Promise<Project>
 readFile(path: string): Promise<Project>
 }

 IFilesService <|-- FilesResolver: uses
 IFilesService <|.. GitlabFilesService: implements
 IFilesService <|.. LocalFilesService: implements
 IFilesService <|-- FilesServiceFactory: creates
 ConfigService <|-- FilesServiceFactory: uses
 ConfigService <|-- GitlabFilesService: uses
 ConfigService <|-- LocalFilesService: uses

sequenceDiagram
 actor Client
 actor Traefik

 box LightGreen Library Microservice
 participant FR as FilesResolver
 participant FSF as FilesServiceFactory
 participant CS as ConfigService
 participant IFS as IFilesService
 participant LFS as LocalFilesService
 participant GFS as GitlabFilesService
 end

 participant FS as Local File System DB
 participant GAPI as GitLab API DB

 Client ->> Traefik : HTTP request
 Traefik ->> FR : GraphQL query
 activate FR

 FR ->> FSF : create()
 activate FSF

 FSF ->> CS : getConfiguration("MODE")
 activate CS

 CS -->> FSF : return configuration value
 deactivate CS

 alt MODE = Local
 FSF ->> FR : return filesService (LFS)
 deactivate FSF

 FR ->> IFS : listDirectory(path) or readFile(path)
 activate IFS

 IFS ->> LFS : listDirectory(path) or readFile(path)
 activate LFS

 LFS ->> CS : getConfiguration("LOCAL_PATH")
 activate CS

 CS -->> LFS : return local path
 deactivate CS

 LFS ->> FS : Access filesystem

5.3.2 Library Microservice

- 86/98 - Copyright © 2022 - 2023 The INTO-CPS Association

Dependency Graphs

The figures are the dependency graphs generated from the code.

 alt Filesystem error
 FS -->> LFS : Filesystem error
 LFS ->> LFS : Throw new InternalServerErrorException
 LFS -->> IFS : Error
 else Successful file operation
 FS -->> LFS : Return filesystem data
 LFS ->> IFS : return Promise<Project>
 end
 deactivate LFS
 else MODE = GitLab
 FSF ->> FR : return filesService (GFS)
 %%deactivate FSF

 FR ->> IFS : listDirectory(path) or readFile(path)
 activate IFS

 IFS ->> GFS : listDirectory(path) or readFile(path)
 activate GFS

 GFS ->> GFS : parseArguments(path)
 GFS ->> GFS : executeQuery()

 GFS ->> CS : getConfiguration("GITLAB_API_URL", "GITLAB_TOKEN")
 activate CS

 CS -->> GFS : return GitLab API URL and Token
 deactivate CS

 GFS ->> GAPI : sendRequest()
 alt GitLab API error
 GAPI -->> GFS : API error
 GFS ->> GFS : Throw new Error("Invalid query")
 GFS -->> IFS : Error
 else Successful GitLab API operation
 GAPI -->> GFS : Return API response
 GFS ->> IFS : return Promise<Project>
 end
 deactivate GFS
 end

 alt Error thrown
 IFS ->> FR : return Error
 deactivate IFS
 FR ->> Traefik : return Error
 Traefik ->> Client : HTTP error response
 else Successful operation
 IFS ->> FR : return Promise<Project>
 deactivate IFS
 FR ->> Traefik : return Promise<Project>
 Traefik ->> Client : HTTP response
 end

 deactivate FR

5.3.2 Library Microservice

- 87/98 - Copyright © 2022 - 2023 The INTO-CPS Association

SRC DIRECTORY

../util.ts

app.module.ts

files/files.module.ts

files/resolvers/files.resolver.ts

files/services/files-service.factory.ts

files/services/gitlab-files.service.ts

files/services/local-files.service.ts

files/interfaces/files.service.interface.ts

types.ts

files/queries.ts

main.ts

5.3.2 Library Microservice

- 88/98 - Copyright © 2022 - 2023 The INTO-CPS Association

TEST DIRECTORY

../src/app.module.ts

../src/files/files.module.ts

../util.ts

../src/files/resolvers/files.resolver.ts

../src/files/services/files-service.factory.ts

../src/files/services/gitlab-files.service.ts

../src/files/services/local-files.service.ts

../src/files/interfaces/files.service.interface.ts

../src/types.ts

../src/files/queries.ts

e2e/app.e2e.spec.ts

testUtil.ts

integration/files.service.integration.spec.ts

unit/files-service.factory.unit.spec.ts

unit/files.resolver.unit.spec.ts

unit/gitlab-files.service.unit.spec.ts

unit/local-files.service.unit.spec.ts

5.3.2 Library Microservice

- 89/98 - Copyright © 2022 - 2023 The INTO-CPS Association

5.4 Testing

5.4.1 Common Questions on Testing

What is Software Testing

Software testing is a procedure to investigate the quality of a software product in different scenarios. It can also be stated as the

process of verifying and validating that a software program or application works as expected and meets the business and

technical requirements that guided design and development.

Why Software Testing

Software testing is required to point out the defects and errors that were made during different development phases. Software

testing also ensures that the product under test works as expected in all different cases – stronger the test suite, stronger is our

confidence in the product that we have built. One important benefit of software testing is that it facilitates the developers to

make incremental changes to source code and make sure that the current changes are not breaking the functionality of the

previously existing code.

What is TDD

TDD stands for Test Driven Development. It is a software development process that relies on the repetition of a very short

development cycle: first the developer writes an (initially failing) automated test case that defines a desired improvement or new

function, then produces the minimum amount of code to pass that test, and finally refactors the new code to acceptable

standards. The goal of TDD can be viewed as specification and not validation. In other words, it’s one way to think through your

requirements or design before your write your functional code.

What is BDD

BDD stands for “Behaviour Driven Development”. It is a software development process that emerged from TDD. It includes the

practice of writing tests first, but focuses on tests which describe behavior, rather than tests which test a unit of implementation.

This provides software development and management teams with shared tools and a shared process to collaborate on software

development. BDD is largely facilitated through the use of a simple domain-specific language (DSL) using natural language

constructs (e.g., English-like sentences) that can express the behavior and the expected outcomes. Mocha and Cucumber testing

libraries are built around the concepts of BDD.

5.4.2 Testing workflow

(Ref: Ham Vocke, The Practical Test Pyramid)

5.4 Testing

- 90/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://martinfowler.com/articles/practical-test-pyramid.html

We follow a testing workflow in accordance with the test pyramid diagram given above, starting with isolated tests and moving

towards complete integration for any new feature changes. The different types of tests (in the order that they should be

performed) are explained below:

Unit Tests

Unit testing is a level of software testing where individual units/ components of a software are tested. The objective of Unit

Testing is to isolate a section of code and verify its correctness.

Ideally, each test case is independent from the others. Substitutes such as method stubs, mock objects, and spies can be used to

assist testing a module in isolation.

BENEFITS OF UNIT TESTING

Unit testing increases confidence in changing/ maintaining code. If good unit tests are written and if they are run every time

any code is changed, we will be able to promptly catch any defects introduced due to the change.

If codes are already made less interdependent to make unit testing possible, the unintended impact of changes to any code is

less.

The cost, in terms of time, effort and money, of fixing a defect detected during unit testing is lesser in comparison to that of

defects detected at higher levels.

UNIT TESTS IN DTAAS

Each component DTaaS project uses unique technology stack. Thus the packages used for unit tests are different. Please check

the test/ directory of a component to figure out the unit test packages used.

Integration tests

Integration testing is the phase in software testing in which individual software modules are combined and tested as a group. In

DTaaS, we use an integration server for software development as well as such tests.

The existing integration tests are done at the component level. There are no integration tests between the components. This task

has been postponed to future.

End-to-End tests

Testing any code changes through the end user interface of your software is essential to verify if your code has the desired effect

for the user. End-to-End tests in DTaaS a functional setup. For more information visit here.

There are end-to-end tests in the DTaaS. This task has been postponed to future.

Feature Tests

A Software feature can be defined as the changes made in the system to add new functionality or modify the existing

functionality. Each feature is said to have a characteristics that is designed to be useful, intuitive and effective. It is important to

test a new feature when it has been added. We also need to make sure that it does not break the functionality of already existing

features. Hence feature tests prove to be useful.

The DTaaS project does not have any feature tests yet. Cucumber shall be used in future to implement feature tests.

5.4.3 References

Justin Searls and Kevin Buchanan, Contributing Tests wiki. This wiki has goog explanation of TDD and test doubles.

•

•

•

5.4.3 References

- 91/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://martinfowler.com/articles/practical-test-pyramid.html#UnitTests
https://martinfowler.com/articles/practical-test-pyramid.html#IntegrationTests
https://github.com/INTO-CPS-Association/DTaaS/wiki/DTaaS-Integration-Server
https://martinfowler.com/articles/practical-test-pyramid.html#End-to-endTests
https://github.com/INTO-CPS-Association/DTaaS/blob/feature/distributed-demo/client/test/README.md
https://github.com/INTO-CPS-Association/DTaaS/blob/feature/distributed-demo/client/test/README.md
https://github.com/cucumber/cucumber-js
https://github.com/testdouble/contributing-tests/wiki
https://github.com/testdouble/contributing-tests/wiki/Test-Driven-Development
https://github.com/testdouble/contributing-tests/wiki/Test-Double

5.5 Publish NPM packages

The DTaaS software is developed as a monorepo with multiple npm packages. Since publishing to npmjs is irrevocable and

public, developers are encouraged to setup their own private npm registry for local development.

A private npm registry will help with local publish and unpublish steps.

5.5.1 Setup private npm registry

We recommend using verdaccio for this task. The following commands help you create a working private npm registry for

development.

You can open http://localhost:4873 in your browser, login with the user credentials to see the packages published.

Publish to private npm registry

To publish a package to your local registry, do:

The package version in package.json gets updated as well. You can open http://localhost:4873 in your browser, login with the user

credentials to see the packages published. Please see verdaccio docs for more information.

If there is a need to unpublish a package, ex: @dtaas/runner@0.0.2 , do:

To install / uninstall this utility for all users, do:

5.5.2 Use the packages

The packages available in private npm registry can be used like the regular npm packages installed from npmjs.

For example, to use @dtaas/runner@0.0.2 package, do:

1
2
3
4
5
6

docker run -d --name verdaccio -p 4873:4873 verdaccio/verdaccio
npm adduser --registry http://localhost:4873 #create a user on the verdaccio registry
npm set registry http://localhost:4873/
yarn config set registry "http://localhost:4873"
yarn login --registry "http://localhost:4873" #login with the credentials for yarn utility
npm login #login with the credentials for npm utility

1
2
3
4

yarn install
yarn build #the dist/ directory is needed for publishing step
yarn publish --no-git-tag-version #increments version in package.json, publishes to registry
yarn publish #increments version in package.json, publishes to registry and adds a git tag

1 npm unpublish --registry http://localhost:4873/ @dtaas/runner@0.0.2

1
2
3

sudo npm install --registry http://localhost:4873 -g @dtaas/runner
sudo npm list -g # should list @dtaas/runner in the packages
sudo npm remove --global @dtaas/runner

1
2

sudo npm install --registry http://localhost:4873 -g @dtaas/runner
runner # launch the digital twin runner

5.5 Publish NPM packages

- 92/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://www.npmjs.com/
https://verdaccio.org
https://verdaccio.org/docs/installation/#basic-usage
https://www.npmjs.com/

6. Few issues in the Software

6.1 Some limitations

The complete DTaaS software requires multiple docker containers and one client website. All of these can work together only

on a server with a proper domain name. The complete application does not work on localhost.

6.2 Third-Party Software

We use third-party software which have certain known issues. Some of the issues are listed below.

6.2.1 ML Workspace

the docker container loses network connectivity after three days. The only known solution is to restart the docker container.

You don't need to restart the complete DTaaS platform, restart of the docker contaienr of ml-workspace is sufficient.

the terminal tool doesn't seem to have the ability to refresh itself. If there is an issue, the only solution is to close and reopen

the terminal from "open tools" drop down of notebook

terminal app does not show at all after some time: terminal always comes if it is open from drop-down menu of Jupyter

Notebook, but not as a direct link.

6.3 Gitlab

The gilab oauth authentication service does not have a way to sign out of a third-party application. Even if you sign out of

DTaaS, the gitlab still shows user as signed in. The next time you click on the sign in button on the DTaaS page, user is not

shown the login page. Instead user is directly taken to the Library page. So close the brower window after you are done.

Another way to overcome this limitation is to open your gitlab instance (https://gitlab.foo.com) and signout from there. Thus user

needs to sign out of two places, namely DTaaS and gitlab, in order to completely exit the DTaaS application.

•

•

•

•

•

•

6. Few issues in the Software

- 93/98 - Copyright © 2022 - 2023 The INTO-CPS Association

7. Contributors

code contributors

7.1 Users

Cláudio Ângelo Gonçalves Gomes, Dmitri Tcherniak, Elif Ecem Bas, Giuseppe Abbiati, Hao Feng, Henrik Ejersbo, Tanusree Roy,

Farshid Naseri

7.2 Documentation

Talasila, P., Gomes, C., Mikkelsen, P. H., Arboleda, S. G., Kamburjan, E., & Larsen, P. G. (2023). Digital Twin as a Service (DTaaS): A

Platform for Digital Twin Developers and Users arXiv preprint arXiv:2305.07244.

Astitva Sehgal for developer and example documentation.

Tanusree Roy and Farshid Naseri for asking interesting questions that ended up in FAQs.

1.

2.

3.

7. Contributors

- 94/98 - Copyright © 2022 - 2023 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/graphs/contributors
https://arxiv.org/abs/2305.07244

8. License

--- Start of Definition of INTO-CPS Association Public License ---

/*

This file is part of the INTO-CPS Association.

Copyright (c) 2017-CurrentYear, INTO-CPS Association (ICA),

c/o Peter Gorm Larsen, Aarhus University, Department of Engineering,

Finlandsgade 22, 8200 Aarhus N, Denmark.

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR

THIS INTO-CPS ASSOCIATION PUBLIC LICENSE (ICAPL) VERSION 1.0.

ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM CONSTITUTES

RECIPIENT'S ACCEPTANCE OF THE INTO-CPS ASSOCIATION PUBLIC LICENSE OR

THE GPL VERSION 3, ACCORDING TO RECIPIENTS CHOICE.

The INTO-CPS tool suite software and the INTO-CPS Association

Public License (ICAPL) are obtained from the INTO-CPS Association, either

from the above address, from the URLs: http://www.into-cps.org or

in the INTO-CPS tool suite distribution.

GNU version 3 is obtained from: http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET FORTH

IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF

THE INTO-CPS ASSOCIATION PUBLIC LICENSE.

See the full ICAPL conditions for more details.

*/

--- End of INTO-CPS Association Public License Header ---

The ICAPL is a public license for the INTO-CPS tool suite with three modes/alternatives (GPL, ICA-Internal-EPL, ICA-External-

EPL) for use and redistribution, in source and/or binary/object-code form:

GPL. Any party (member or non-member of the INTO-CPS Association) may use and redistribute INTO-CPS tool suite under

GPL version 3.

Silver Level members of the INTO-CPS Association may also use and redistribute the INTO-CPS tool suite under ICA-Internal-

EPL conditions.

Gold Level members of the INTO-CPS Association may also use and redistribute The INTO-CPS tool suite under ICA-Internal-

EPL or ICA-External-EPL conditions.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

8. License

- 95/98 - Copyright © 2022 - 2023 The INTO-CPS Association

Definitions of the INTO-CPS Association Public license modes:

GPL = GPL version 3.

ICA-Internal-EPL = These INTO-CPA Association Public license conditions together with Internally restricted EPL, i.e., EPL

version 1.0 with the Additional Condition that use and redistribution by a member of the INTO-CPS Association is only allowed

within the INTO-CPS Association member's own organization (i.e., its own legal entity), or for a member of the INTO-CPS

Association paying a membership fee corresponding to the size of the organization including all its affiliates, use and

redistribution is allowed within/between its affiliates.

ICA-External-EPL = These INTO-CPA Association Public license conditions together with Externally restricted EPL, i.e., EPL

version 1.0 with the Additional Condition that use and redistribution by a member of the INTO-CPS Association, or by a

Licensed Third Party Distributor having a redistribution agreement with that member, to parties external to the INTO-CPS

Association member’s own organization (i.e., its own legal entity) is only allowed in binary/object-code form, except the case of

redistribution to other members the INTO-CPS Association to which source is also allowed to be distributed.

[This has the consequence that an external party who wishes to use the INTO-CPS Association in source form together with its

own proprietary software in all cases must be a member of the INTO-CPS Association].

In all cases of usage and redistribution by recipients, the following conditions also apply:

a) Redistributions of source code must retain the above copyright notice, all definitions, and conditions. It is sufficient if the

ICAPL Header is present in each source file, if the full ICAPL is available in a prominent and easily located place in the

redistribution.

b) Redistributions in binary/object-code form must reproduce the above copyright notice, all definitions, and conditions. It is

sufficient if the ICAPL Header and the location in the redistribution of the full ICAPL are present in the documentation and/or

other materials provided with the redistribution, if the full ICAPL is available in a prominent and easily located place in the

redistribution.

c) A recipient must clearly indicate its chosen usage mode of ICAPL, in accompanying documentation and in a text file ICA-

USAGE-MODE.txt, provided with the distribution.

d) Contributor(s) making a Contribution to the INTO-CPS Association thereby also makes a Transfer of Contribution Copyright.

In return, upon the effective date of the transfer, ICA grants the Contributor(s) a Contribution License of the Contribution. ICA

has the right to accept or refuse Contributions.

Definitions:

"Subsidiary license conditions" means:

The additional license conditions depending on the by the recipient chosen mode of ICAPL, defined by GPL version 3.0 for GPL,

and by EPL for ICA-Internal-EPL and ICA-External-EPL.

"ICAPL" means:

INTO-CPS Association Public License version 1.0, i.e., the license defined here (the text between "--- Start of Definition of INTO-

CPS Association Public License ---" and "--- End of Definition of INTO-CPS Association Public License ---", or later versions

thereof.

"ICAPL Header" means:

INTO-CPS Association Public License Header version 1.2, i.e., the text between "--- Start of Definition of INTO-CPS Association

Public License ---" and "--- End of INTO-CPS Association Public License Header ---, or later versions thereof.

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation distributed under ICAPL, and

b) in the case of each subsequent Contributor: i) changes to the INTO-CPS tool suite, and ii) additions to the INTO-CPS tool

suite;

•

•

•

8. License

- 96/98 - Copyright © 2022 - 2023 The INTO-CPS Association

where such changes and/or additions to the INTO-CPS tool suite originate from and are distributed by that particular

Contributor. A Contribution 'originates' from a Contributor if it was added to the INTO-CPS tool suite by such Contributor itself

or anyone acting on such Contributor's behalf.

For Contributors licensing the INTO-CPS tool suite under ICA-Internal-EPL or ICA-External-EPL conditions, the following

conditions also hold:

Contributions do not include additions to the distributed Program which: (i) are separate modules of software distributed in

conjunction with the INTO-CPS tool suite under their own license agreement, (ii) are separate modules which are not derivative

works of the INTO-CPS tool suite, and (iii) are separate modules of software distributed in conjunction with the INTO-CPS tool

suite under their own license agreement where these separate modules are merged with (weaved together with) modules of The

INTO-CPS tool suite to form new modules that are distributed as object code or source code under their own license agreement,

as allowed under the Additional Condition of internal distribution according to ICA-Internal-EPL and/or Additional Condition for

external distribution according to ICA-External-EPL.

"Transfer of Contribution Copyright" means that the Contributors of a Contribution transfer the ownership and the copyright of

the Contribution to the INTO-CPS Association, the INTO-CPS Association Copyright owner, for inclusion in the INTO-CPS tool

suite. The transfer takes place upon the effective date when the Contribution is made available on the INTO-CPS Association web

site under ICAPL, by such Contributors themselves or anyone acting on such Contributors' behalf. The transfer is free of charge.

If the Contributors or the INTO-CPS Association so wish, an optional Copyright transfer agreement can be signed between the

INTO-CPS Association and the Contributors.

"Contribution License" means a license from the INTO-CPS Association to the Contributors of the Contribution, effective on the

date of the Transfer of Contribution Copyright, where the INTO-CPS Association grants the Contributors a non-exclusive, world-

wide, transferable, free of charge, perpetual license, including sublicensing rights, to use, have used, modify, have modified,

reproduce and or have reproduced the contributed material, for business and other purposes, including but not limited to

evaluation, development, testing, integration and merging with other software and distribution. The warranty and liability

disclaimers of ICAPL apply to this license.

"Contributor" means any person or entity that distributes (part of) the INTO-CPS tool chain.

"The Program" means the Contributions distributed in accordance with ICAPL.

"The INTO-CPS tool chain" means the Contributions distributed in accordance with ICAPL.

"Recipient" means anyone who receives the INTO-CPS tool chain under ICAPL, including all Contributors.

"Licensed Third Party Distributor" means a reseller/distributor having signed a redistribution/resale agreement in accordance

with ICAPL and the INTO-CPS Association Bylaws, with a Gold Level organizational member which is not an Affiliate of the

reseller/distributor, for distributing a product containing part(s) of the INTO-CPS tool suite. The Licensed Third Party Distributor

shall only be allowed further redistribution to other resellers if the Gold Level member is granting such a right to it in the

redistribution/resale agreement between the Gold Level member and the Licensed Third Party Distributor.

"Affiliate" shall mean any legal entity, directly or indirectly, through one or more intermediaries, controlling or controlled by or

under common control with any other legal entity, as the case may be. For purposes of this definition, the term "control"

(including the terms "controlling," "controlled by" and "under common control with") means the possession, direct or indirect, of

the power to direct or cause the direction of the management and policies of a legal entity, whether through the ownership of

voting securities, by contract or otherwise.

NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF ICAPL, THE

INTO-CPS ASSOCIATION IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-

INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for

determining the appropriateness of using and distributing the INTO-CPS tool suite and assumes all risks associated with its

exercise of rights under ICAPL , including but not limited to the risks and costs of program errors, compliance with applicable

laws, damage to or loss of data, programs or equipment, and unavailability or interruption of operations.

DISCLAIMER OF LIABILITY

8. License

- 97/98 - Copyright © 2022 - 2023 The INTO-CPS Association

EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF ICAPL,

NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE INTO-CPS TOOL SUITE

OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

A Contributor licensing the INTO-CPS tool suite under ICA-Internal-EPL or ICA-External-EPL may choose to distribute (parts of)

the INTO-CPS tool suite in object code form under its own license agreement, provided that:

a) it complies with the terms and conditions of ICAPL; or for the case of redistribution of the INTO-CPS tool suite together with

proprietary code it is a dual license where the INTO-CPS tool suite parts are distributed under ICAPL compatible conditions and

the proprietary code is distributed under proprietary license conditions; and

b) its license agreement: i) effectively disclaims on behalf of all Contributors all warranties and conditions, express and implied,

including warranties or conditions of title and non-infringement, and implied warranties or conditions of merchantability and

fitness for a particular purpose; ii) effectively excludes on behalf of all Contributors all liability for damages, including direct,

indirect, special, incidental and consequential damages, such as lost profits; iii) states that any provisions which differ from

ICAPL are offered by that Contributor alone and not by any other party; and iv) states from where the source code for the INTO-

CPS tool suite is available, and informs licensees how to obtain it in a reasonable manner on or through a medium customarily

used for software exchange.

When the INTO-CPS tool suite is made available in source code form:

a) it must be made available under ICAPL; and

b) a copy of ICAPL must be included with each copy of the INTO-CPS tool suite.

c) a copy of the subsidiary license associated with the selected mode of ICAPL must be included with each copy of the INTO-CPS

tool suite.

Contributors may not remove or alter any copyright notices contained within The INTO-CPS tool suite.

If there is a conflict between ICAPL and the subsidiary license conditions, ICAPL has priority.

This Agreement is governed by the laws of Denmark. The place of jurisdiction for all disagreements related to this Agreement, is

Aarhus, Denmark.

The EPL 1.0 license definition has been obtained from: http://www.eclipse.org/legal/epl-v10.html. It is also reproduced in the

INTO-CPS distribution.

The GPL Version 3 license definition has been obtained from http://www.gnu.org/copyleft/gpl.html. It is also reproduced in the

INTO-CPS distribution.

--- End of Definition of INTO-CPS Association Public License ---

8. License

- 98/98 - Copyright © 2022 - 2023 The INTO-CPS Association

	Digital Twin as a Service (DTaaS)
	1. What is DTaaS?
	1.1 License

	2. Admin
	2.1 Overview
	2.1.1 What is the goal?
	2.1.2 What are the requirements?
	OAuth Provider
	Domain name
	Reverse Proxy

	2.1.3 What to install?

	2.2 Setting Up OAuth
	2.2.1 Development Environment
	2.2.2 Multiple DTaaS applications

	2.3 Host Install
	2.3.1 Trial Installation
	Pre-requisites
	1. Domain name
	2. Gitlab OAuth application

	Install
	Post install
	Sanity check
	References

	2.3.2 DTaaS on Linux Operating System
	Configuration
	Traefik gateway server
	Authentication

	Lib microservice
	React Client Website
	Gitlab OAuth application
	Update Client Config

	Update the installation script
	Perform the Installation
	Access the application
	References

	2.4 Vagrant
	2.4.1 DTaaS Vagrant Box
	References

	2.4.2 DTaaS on Single Vagrant Machine
	Create Base Vagrant Box
	Target Installation Setup
	Configure Server Settings
	Installation Steps
	References

	2.4.3 DTaaS on Two Vagrant Machines
	Create Base Vagrant Box
	Target Installation Setup
	Configure Server Settings
	Installation Steps
	Launch DTaaS Platform Default Services
	Install DTaaS Application

	References

	2.5 Separate Packages
	2.5.1 Host the DTaaS Client Website
	Complementary Components

	2.5.2 Host Library Microservice
	Setup the File System
	Gitlab setup (optional)
	Setup Microservice
	Configuration setup
	Start Microservice
	Config flag

	Service Endpoint

	2.6 Third-party Services
	2.6.1 Pre-requisites
	2.6.2 Configure and Install
	2.6.3 Use

	3. User
	3.1 Motivation
	3.1.1 Existing Approaches
	3.1.2 Our Approach

	3.2 Overview
	3.2.1 Advantages
	3.2.2 Software Features

	3.3 DTaaS Website Screenshots
	3.3.1 Login to enter the DTaaS software platform
	3.3.2 Start the Authentication
	3.3.3 Authenticate at Gitlab
	3.3.4 Permit DTaaS to Use Gitlab
	3.3.5 Overview of menu items
	3.3.6 Library tabs and their help text
	3.3.7 Digital Twins page
	3.3.8 Workbench
	3.3.9 Finally logout

	3.4 Library
	3.4.1 Reusable Assets
	Kinds of Reusable Assets
	Functions
	Data
	Models
	Tools
	Digital Twins

	File System Structure
	Upload Assets

	3.4.2 Library Microservice
	API Queries
	Provide list of contents for a directory
	Fetch a file from the available files

	3.5 Digital Twins
	3.5.1 Create a Digital Twin
	Example

	3.5.2 Digital Twin Lifecycle
	Lifecycle Phases
	Example Lifecycle Scripts

	3.6 Examples
	3.6.1 DTaaS Examples
	Copy Examples
	Example List

	3.6.2 Mass Spring Damper
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Examine the results

	Terminate phase

	References

	3.6.3 Water Tank Fault Injection
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	3.6.4 Water Tank Model Swap
	Overview
	Example Structure
	Configuration of assets
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	3.6.5 Desktop Robotti with RabbitMQ
	Overview
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Examine the results

	Terminate phase

	References

	4. Frequently Asked Questions
	4.1 Abreviations
	4.2 General Questions
	4.3 Digital Twin Models
	4.4 Communication Between Physical Twin and Digital Twin
	4.5 Data Management
	4.6 Platform Native Services on DTaaS Platform
	4.7 Comparison with other DT Platforms
	4.8 Create Assets
	4.9 GDPR Concerns

	5. Developer
	5.1 Developers Guide
	5.1.1 Development Environment
	5.1.2 Development Workflow
	5.1.3 Code Quality
	Code Climate
	Codecov
	Github Actions

	5.2 System
	5.2.1 System Overview
	User Requirements
	System Architecture
	System Components

	C4 Architectural Diagrams
	Level 1
	Level 2

	Mapping

	5.2.2 Current Status
	User Security
	Gateway Authentication

	User Workspaces
	Platform Services
	Development Priorities

	5.3 Components
	5.3.1 React Website
	Dependency Graphs
	src directory
	test directory

	5.3.2 Library Microservice
	Architecture and Design
	UML Diagrams
	Class Diagram
	Sequence Diagram

	Dependency Graphs
	src directory
	test directory

	5.4 Testing
	5.4.1 Common Questions on Testing
	What is Software Testing
	Why Software Testing
	What is TDD
	What is BDD

	5.4.2 Testing workflow
	Unit Tests
	Benefits of Unit Testing
	Unit Tests in DTaaS

	Integration tests
	End-to-End tests
	Feature Tests

	5.4.3 References

	5.5 Publish NPM packages
	5.5.1 Setup private npm registry
	Publish to private npm registry

	5.5.2 Use the packages

	6. Few issues in the Software
	6.1 Some limitations
	6.2 Third-Party Software
	6.2.1 ML Workspace

	6.3 Gitlab

	7. Contributors
	7.1 Users
	7.2 Documentation

	8. License

