Digital Twin as a Service
(DTaaS)

DTaaS Development Team

26 The INTO-CPS Association

Table of contents

Table of contents

1. What is the DTaaS Platform?

1.1

1.2

License

References

2. User

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

DTaasS for Users
Overview

Website

Reusable Assets
Digital Twins
Working with GitLab
Runner

Examples

3. Admin

3.1

3.2

3.3

3.4

3.5

Install

Integrated Gitlab

DTaaS Command Line Interface
Independent Packages

Guides

4. Frequently Asked Questions

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

Abreviations

General Questions

Digital Twin Assets

Digital Twin Models

Communication Between Physical Twin and Digital Twin
Digital Twin DevOps Automation

Data Management

Platform Native Services on the DTaa$S Platform

Comparison with other DT Platforms

4.10 GDPR Concerns

5. Developer

5.1
3.2
5.3
5.4

5.5

Contributors Guide

Contributor Covenant Code of Conduct
Secrets for Github Action

System

OAuth2 Authorization

- 2/249 -

23

32

33

57

61
119
119
159
171
175
179
191
191
191
192
192
192
193
193
194
195
195
197
197
199
201
202

207

Copyright © 2022 - 2026 The INTO-CPS Association

Table of contents

5.6 Testing 216
5.7 Docker Workflow for DTaaS 218
5.8 Publish NPM packages 220
5.9 Command Line Interface 222
5.10 React Website 225
5.11 Library Microservice 227
5.12 Runner Microservice 230
5.13 DevOps Framework 232
6. Known Issues in the Software 242
6.1 Third-Party Software 242
6.2 GitLab 242
7. Thanks 243
7.1 Funding Sources 243
7.2 Developers 243
7.3 Example Contributors 243
7.4 Documentation 243
8. License 245
8.1 License 245
8.2 Third Party Software 249

-3/249 - Copyright © 2022 - 2026 The INTO-CPS Association

1. What is the DTaaS Platform?

1. What is the DTaaS Platform?

The Digital Twin as a Service (DTaaS) software platform is designed to Build, Use and Share digital twins (DTs)["1].

u

Build: DTs are constructed on DTaaS using reusable DT assets available on the platform.

I, ® Use: DTs can be executed on the DTaas$ platform.

Share: Ready-to-use DTs can be shared with other users. It is also possible to share the services offered by one DT with other users.

Here is an overview of the DTaa$ platform available in the form of slides, video, and feature walkthrough.
1.1 License

This software is owned by The INTO-CPS Association and is available under the INTO-CPS License.

The DTaasS platform uses third-party open-source software. These software components have their own licenses

1.2 References

[1]: Talasila, Prasad, et al. "Composable digital twins on Digital Twin as a Service platform." Simulation 101.3 (2025): 287-311.

-4/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/20250603_DTaaS-short-intro.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20250603_DTaaS-short-intro_recorded_web.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/dtaas-v0.7.mp4
https://into-cps.org/

2. User

2. User

2.1 DTaaS for Users
2.1.1 User Guide

This guide is intended for users of the DTaa$ platform. Access to a live installation of the DTaa$ platform is required. The simplest option is
the localhost installation scenario.

The following user-specific Slides and Video provide the conceptual framework behind composable digital twins in the DTaaS$ platform.

2.1.2 Motivation

A central question in Digital Twin (DT) software platforms is how to enable collaborative activities:

* Building digital twins (DTs)
» Utilizing DTs independently
* Sharing DTs with other users

* Providing existing DTs as a service to other users
Additionally, DT software platforms must address:

« Support for DT lifecycle management

* Scalability through flexible convention over configuration

2.1.3 Existing Approaches

Several solutions have been proposed in recent literature to address these challenges. Notable approaches include:

* Focus on data from Physical Twins (PTs) for analysis, diagnosis, and planning
* Sharing DT assets across upstream and downstream stakeholders

* Evaluating different models of PT

* DevOps methodologies for Cyber Physical Systems (CPS)

* Scaling DT execution and ensemble management of related DTs

* Support for PT product lifecycle

2.1.4 Our Approach

The DTaa$ platform adopts the following principles[1]:

* Support for transition from existing workflows to DT frameworks
* Creation of DTs from reusable assets

* Enabling users to share DT assets

* Offering DTs as a Service

* Integration of DTs with external software systems

* Separation of configurations for independent DT components

2.1.5 References

[1]: Talasila, Prasad, et al. "Composable digital twins on Digital Twin as a Service platform." Simulation 101.3 (2025): 287-311.

-5/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/20250605-Users.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20250605-Users-recorded_web.mp4

2.2 Overview

2.2 Overview

2.2.1 Advantages

The DTaa$ software platform provides the following advantages:

* Support for heterogeneous Digital Twin implementations

* CFD, Simulink, co-simulation, FEM, ROM, ML, and other paradigms

* Integration with existing Digital Twin frameworks

* Provision of Digital Twin as a Service capabilities[*1]

* Facilitation of collaboration and asset reuse

* Private workspaces for verification of reusable assets and trial executions of DTs

* Cost effectiveness through shared infrastructure

2.2.2 Software Features

Each installation of the DTaa$ platform includes the features illustrated in the following diagram.

#c \-<(
N /i l i had kDigitaI Twin as a Service
2@ DTaa$
Physical Twins Web Interface
Communication||pash [Third-party DevOps
sense and boards : - Compose Configuration Execution ecosystem
control Graphical Digital
Twins Heterogeneous
Common o e ——
gtata 8 et @ Workspace | Digital Twin Automation Layer DevOps
orage ervices (using Gitlab) (using Gitlab Runners)

Ny On-premise / Cloud Servers

All users are provided with dedicated workspaces. These workspaces are containerized implementations of Linux Desktops. The user
desktops are isolated, ensuring that installations and customizations performed in one workspace do not affect other user workspaces.
Graphical digital twins can be executed within these private workspaces.

Each user workspace is provisioned with pre-installed development tools. These tools are accessible directly through a web browser. The
following tools are currently available:
Tool Advantage

Jupyter Lab Enables flexible creation and use of digital twins and their components through a web browser. All native
JupyterLab use cases are supported.

Jupyter Notebook Facilitates web-based management of files and library assets.

VS Code in the A widely-adopted IDE for software development. Digital twin-related assets can be developed within this
browser environment.

ungit An interactive git client enabling repository management through a web browser.

In addition, an xfce-based remote desktop is accessible via a VNC client. The VNC client is available directly in the web browser. Desktop
software supported by xfce can also be executed within the workspace.

The workspaces maintain Internet connectivity, enabling Digital Twins running in the workspace to interact with both internal and
external services.

A DT automation layer is provided for managing DT automation tasks. This layer facilitates creation, modification, and execution of DTs on
both on-premise infrastructure and commercial cloud (DevOps) service providers.

- 6/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.2.3 References

The DTaasS software platform includes several pre-installed services. The currently available services are:

Service Advantage

InfluxDB Internet of Things (IoT) device management and data visualization platform. This service stores data for digital
twins and provides alerting capabilities.

RabbitMQ Communication broker facilitating message exchange between physical and digital twins.

Grafana Visualization dashboard service for digital twin data presentation.

MQTT Lightweight data transfer broker for IoT devices and physical twins providing data to digital twins.
MongoDB NoSQL document database for storing metadata from physical twins.

PostgreSQL SQL database server for storing historical and time-series data.

ThingsBoard an Internet of Things (IoT) device management and data visualization platform

Users can publish and reuse digital twin assets available on the platform. Additionally, digital twins can be executed and made available as
services to external clients[1]. These clients need not be registered users of the DTaaS$ installation.

2.2.3 References

[1]: Talasila, Prasad, et al. "Composable digital twins on Digital Twin as a Service platform." Simulation 101.3 (2025): 287-311.

-7/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.3 Website

2.3 Website

2.3.1 DTaaS Website Screenshots

This page provides a screenshot-driven preview of the website serving the DTaas$ software platform.

Visit the DTaaS Installation

Navigation begins by visiting the website of the DTaa$ instance for which the user is registered.

/C:/Users/au598657/git/DTaaS/docs/as X +

« C @ Q dtaas-digitaltwin.com/

i) (B
DTaaS

Redirected to Authorization Provider

The browser redirects to the GitLab Authorization page for the DTaasS.

Copyright © 2022 - 2026 The INTO-CPS Association

- 8/249 -

&) signin- Gitlab

<« C @

+

O EJ https://dtaas-digitaltwin.com/gitlab/users/sign_in

g

GitLab Community Edition

Username or primary email

[TestUserDTaaS }

Password

[00000000000000 @}

Forgot your password?

) Remember me

Explore Help About Gittab Community forum

2.3.1 DTaaS Website Screenshots

<
|

Q

X

* © @ 0 22 ® 6

@ English v

The email/username and password should be entered. If the email ID registered with the DTaaS matches a GitLab Login email ID.

The browser redirects to the OAuth 2.0 Application page.

Permit DTaaS Server to Use GitLab

O & https://dtaas-digitaltwin.com/gitlab/oauth/authorize?client_id=47e895201fe5e97fd0f92d11c6ebe5564e6f5c200f

w

v = X

0 9 £ e &y

&) User settings - GitLab x e

<« C @

“ 0 + @} User Settings > User Settings
(0 19 &~

Q Search or go to...

User settings

@ Profile

8% Account

28 Applications
Chat
Access Tokens
Emails
Password
Notifications
SSH Keys
GPG Keys

Preferences

)

@ Help

[Q Search page

Authorize DTaaS Server to use your account?

An application called DTaaS Server is requesting

access to your

GitLab account. This application was created by TestUserDTaasS.

Please note that this application is not provided b

y GitLab and you

should verify its authenticity before allowing access.

This application will be able to:

« Read the authenticated user's personal in

formation

Grants read-only access to the authenticated user's profile

through the /user API endpoint, which inclu:

des username,

public email, and full name. Also grants access to read-only API

endpoints under /users.

Clicking on Authorize permits the OAuth 2.0 application to access the information associated with the GitLab account. This is a required

step.

After successful authentication, redirection to the login page of the DTaaS website occurs.

-9/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

2.3.1 DTaaS Website Screenshots

The DTaa$S website employs an additional layer of security - the third-party authorization protocol known as OAuth 2.0. This protocol
provides secure access to a DTaas$ installation for users with active accounts at the selected OAuth 2.0 service provider. This

implementation also uses GitLab as the OAuth 2.0 provider.

The Digital Twin as a Service

<« C @

x|+

O (5 https://dtaas-digitaltwin.com

The Digital Twin as a Service

v = X

© 0 9 =8 & &

Thanks to Material-Ul for the Dashboard template, which was the basis for our React app.

Sign In with GitLab

Copyright © The INTO-CPS Association 2024.

The GitLab signin button is displayed. Clicking this button redirects to the GitLab instance providing authorization for DTaaS. Re-

authentication to GitLab is not required, unless explicit logout from the GitLab account has occurred.

Permit DTaaS Website to Use GitLab

The DTaa$S website requires permission to use the GitLab account for authorization. The Authorize button must be clicked.

()

&«

v

User Settings - GitLab
C @
D + &
D b3 &

Q search or go to...

User settings

®

8°

MmN > SPe e Qg 0 0 88

Profile

Account
Applications
Chat

Access Tokens
Emails
Password
Notifications
SSH Keys

GPG Keys
Preferences
Comment Templates
Active Sessions

Authentication Log

@ Help

X

+

O 5 https://dtaas-digitaltwin.com/gitlab/oauth/authorize?client_id=986a3cf9fb1962d8d4c6f22620a786€797 67% i}

User Settings

User Settings

[Q search page

v = X

¥ 0@ 020 é

Authorize DTaaS client to use your account?

An application called DTaa$ client is requesting access to your GitLab
account. This application was created by TestUserDTaaS. Please note
that this application is not provided by GitLab and you should verify its
authenticity before allowing access.

This application will be able to:

« Authenticate using OpenID Connect
Grants permission to authenticate with GitLab using OpeniD
Connect. Also gives read-only access to the user's profile and
group memberships.

« Allows read-only access to the user's personal information
using OpenlID Connect
Grants read-only access to the user's profile data using OpenlD
Connect.

« Read the authenticated user's personal information
Grants read-only access to the authenticated user’s profile
through the /user API endpoint, which includes username,
public email, and full name. Also grants access to read-only API
endpoints under /users.

« Allows read-only access to the repository
Grants read-only access to repositories on private projects
using Git-over-HTTP or the Repository Files API

« Access the authenticated user's AP|
Grants complete read/write access to the API, including all
groups and projects, the container registry, and the package
registry.

-10/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-pkce

2.3.1 DTaaS Website Screenshots

After successful authorization, redirection to the Library page of the DTaaS website occurs.

Two icons are located on the top-right of the webpage. The hyperlink on the question mark icon redirects to the help page, while the
hyperlink on the github icon redirects to the GitHub code repository.

Check Website Access

For troubleshooting login issues, the website configuration can be verified by navigating to https://foo.com/config/user. The following
display indicates a correctly configured application.

<« C O B ntips//dtaas-digitaltwin.com/config/user w ® ¥ 0 9 2 @ ® 6 O 5 =

The Digital Twin as a Service

Configuration appears to

valid.

Return to login

Menu Items

The menu is hidden by default. Only the icons of menu items are visible. Clicking on the — icon in the top-left corner of the page reveals
the menu.

The Digital Twin as a Service X |+

v = X
&« C o QO B nitpsy//dtaas-digitaltwin.com/Library?code=70916853856d2160cacc8f5{793b9c5c0120c1616a46793929¢ 80% Tp ©® @ 9 2 @ ® & 543 =
<
* Library ‘ Functions = Models Tools Data Digital Twins
-r Digital Twins The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and functions can be used to

create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to their use; functions written by domain experts
along with right data inputs can make model calibration an achievable goal. Another use of functions is to process the sensor and actuator data of both
Physical Twins and Digital Twins.

%2 Workbench

Private | Common

These reusable assets are only visible to you. Other users can not use these assets in their digital twins.

Workspace ©ODocs | Open Tool ~

Files Running Clusters Nbextensions

Select items to perform actions on them. <> gt Upload New~ &
Do -~ M/ functions Namew LastModified File size

] seconds ago

The notebook list is empty.

Copyright © The INTO-CPS Association 2024.
Three menu items are available:

Library: For management of reusable library assets. Files can be uploaded, downloaded, created, and modified on this page.

-11/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://foo.com/config/user

2.3.1 DTaaS Website Screenshots

Digital Twins: For management of digital twins. A Jupyter Lab page is presented from which digital twins can be executed.

Workbench: Not all digital twins can be managed within Jupyter Lab. Additional tools are available on this page.

Library Page
The Digital Twin as a Service X — v = X
¢« C @ QO O httpsy/dtaas-digitaltwin.com/Library?code=70916853856d2160cacc8f5793b9c5c0120c1616a46793929¢ 90% T ©® 0 92 2 ® &6 O =

The Digital Twin as a Service

» Functions = Models Tools Data Digital Twins

- The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and functions can be used to
create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to their use; functions written by domain experts
along with right data inputs can make model calibration an achievable goal. Another use of functions is to process the sensor and actuator data of both
Physical Twins and Digital Twins.

Private = Common

These reusable assets are only visible to you. Other users can not use these assets in their digital twins.

Workspace ODocs | Open Tool v

Files Running Clusters Nbextensions
Select items to perform actions on them. <> git] Upload New~ &
(Jo + M/ functions Name ¥ Last Modified = File size
o. seconds ago

The notebook list is empty.

Five tabs are displayed, each corresponding to one type of digital twin asset. Each tab provides help text to guide users on the asset type.

I’ﬁnctions

The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and functions
can be used to create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to their use;
functions written by domain experts along with right data inputs can make model calibration an achievable goal. Another use of functions is to
process the sensor and actuator data of both Physical Twins and Digital Twins.

Bata

The data sources and sinks available to a digital twins. Typical examples of data sources are sensor measurements from Physical Twins, and
test data provided by manufacturers for calibration of models. Typical examples of data sinks are visualization software, external users and
data storage services. There exist special outputs such as events, and commands which are akin to control outputs from a Digital Twin. These
control outputs usually go to Physical Twins, but they can also go to another Digital Twin.

Iﬁ)dels

The model assets are used to describe different aspects of Physical Twins and their environment, at different levels of abstraction. Therefore, it
is possible to have multiple models for the same Physical Twin. For example, a flexible robot used in a car production plant may have
structural model(s) which will be useful in tracking the wear and tear of parts. The same robot can have a behavioural model(s) describing the
safety guarantees provided by the robot manufacturer. The same robot can also have a functional model(s) describing the part manufacturing
capabilities of the robot.

-12/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.3.1 DTaaS Website Screenshots

”fgols

The software tool assets are software used to create, evaluate and analyze models. These tools are executed on top of a computing platforms,
i.e., an operating system, or virtual machines like Java virtual machine, or inside docker containers. The tools tend to be platform specific,
making them less reusable than models. A tool can be packaged to run on a local or distributed virtual machine environments thus allowing
selection of most suitable execution environment for a Digital Twin. Most models require tools to evaluate them in the context of data inputs.
There exist cases where executable packages are run as binaries in a computing environment. Each of these packages are a pre-packaged
combination of models and tools put together to create a ready to use Digital Twins.

]ﬁgital Twins

These are ready to use digital twins created by one or more users. These digital twins can be reconfigured later for specific use cases.

Two sub-tabs exist: private and common. Library assets in the private category are visible only to the logged-in user, while library assets
in the common category are available to all users.

Further explanation on the placement of reusable assets within each type and the underlying directory structure on the server is available
on the assets page.

-
Kote

Assets (files) can be uploaded using the upload button.

e The file manager is based on Jupyter Notebook, and all tasks available in Jupyter Notebook can be performed here.

Digital Twins Page

The Digital Twin as a Service X + v = X
« C @ QO 8 hitps//dtaas-digitaltwin.com/digitalwins 0% Ty ©® 0 9 2 A ® &) =
= The Digital Twin as a Service A
» Create = Execute Analyze

AL Create digital twins from tools provided within user workspaces. Each digital twin will have one directory. It is suggested that user provide one bash shell script

to run their digital twin. Users can create the required scripts and other files from tools provided in Workbench page.

34 gy
- ~ File Edit View Run Kernel Tabs Settings Help
™ 1+ c [Launcher %
Filter files by name Q
-/ [El Notebook
.— Name - Last Modified
8 common 12 days ago ﬁ
* B data 12 days ago
B digital_twins 12 days ago
Python 3
8 functions 12 days ago
B models 12 days ago
B tools 12 days ago c
o Console
am
Simple 0 0 & Mem:96.03/7751.00 MB Launcher

Copyright © The INTO-CPS Association 2024.

Thanks to Material-Ul for the Dashboard template, which was the basis for our React app

The digital twins page contains three tabs, and the central pane opens Jupyter Lab. The three tabs provide helpful instructions on
suggested tasks for the Create - Execute - Analyze lifecycle phases of a digital twin. More explanation is available on the lifecycle phases
of digital twin.

-13/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.3.1 DTaaS Website Screenshots

&eate

Create digital twins from tools provided within user workspaces. Each digital twin will have one directory. It is suggested that user provide one
bash shell script to run their digital twin. Users can create the required scripts and other files from tools provided in Workbench page.

ﬁ&ecute

data directory.

Digital twins are executed from within user workspaces. The given bash script gets executed from digital twin directory. Terminal-based digital
twins can be executed from VSCode and graphical digital twins can be executed from VNC GUI. The results of execution can be placed in the

Aalyze

The analysis of digital twins requires running of digital twin script from user workspace. The execution results placed within data directory
are processed by analysis scripts and results are placed back in the data directory. These scripts can either be executed from VSCode and
graphical results or can be executed from VNC GUI The analysis of digital twins requires running of digital twin script from user workspace.
The execution results placed within data directory are processed by analysis scripts and results are placed back in the data directory. These
scripts can either be executed from VSCode and graphical results or can be executed from VNC GUI.

e The reusable assets (files) displayed in the file manager are also available in Jupyter Lab. Additionally, a git plugin is installed in

Jupyter Lab that enables linking files with external git repositories.

Workbench

The workbench page provides links to four integrated tools:

* Desktop

* VS Code

* Jupyter Lab

* Jupyter Notebook

£

25 dtaas-digitaltwin.com/workbench

ation @ Oc c ITL Bulletin The . @ Dig

The Digital Twin as a Service

Workbench Tools

L] <> A

Desktop VSCode JupyterLab Jupyter Notebook

3

= Incognito

3 All Boo

A

/’

Digital Twins page preview

Library page preview

Copyright © The INTO-CPS Association 2025.

Thanks to Material-Ul for the Dashboard template, which was the basis for our React app.

Screenshots of the pages opened in new browsers are shown:

- 14/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

2.3.1 DTaaS Website Screenshots

(base)
>
commc
(base)
)
= ~
B =E ¥ ¢ =2
o 18 e)
code-server v3.10.2
VS Code v1.56.1
VVVVV mee o = =
f: Workspace ODocs OpenTooi~
Fies yihon Clusters Nbextensions
Selecttems o perform actons on them -
e
5 ga 23 days ago
=} L 12 days ago
_— amonth ago
5 model 23 days ago
=} amonth ago

ot Hdaysago S69ME

Workspace EN g
Desktop
VNC

The hyperlinks open in new browser tabs.

”lQrminal

The Terminal hyperlink does not exist on the workbench page. For terminal access, the tools dropdown in Jupyter Notebook should be used.

: Workspace ©ODocs | Open Tool v

Files Running IPython Clusters Nbextensions

Select items to perform actions on them. <> gt Upload New~ <
Jo ~ mm/ Name ¥ Last Modified File size
O O common a day ago

-15/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.3.1 DTaaS Website Screenshots

The workbench also has two links to DevOps-based implementation of composable digital twins.
* Library Page Preview

* Digital Twins Page Preview

LIBRARY PREVIEW PAGE

This page has the same philosophy of Library page and provides similar user interface.

C 25 dtaas-digitaltwin.com/preview/library aQ %) & Incognito

3 All Bookmark:

T’w' Duplicatea VDI @) Research Coordination @ Odin account creation ITL Bulletin The Syste... @ Digital twinand thea.. @ Adobe Acrobat

= The Digital Twin as a Service A

Functions Models = Tools @ Data Digital Twins

»

The software tool assets are software used to create, evaluate and analyze models. These tools are executed on top of a computing platforms,
i.e., an operating system, or virtual machines like Java virtual machine, or inside docker containers. The tools tend to be platform specific,
making them less reusable than models. A tool can be packaged to run on a local or distributed virtual machine environments thus allowing
selection of most suitable execution environment for a Digital Twin. Most models require tools to evaluate them in the context of data inputs.
There exist cases where executable packages are run as binaries in a computing environment. Each of these packages are a pre-packaged
combination of models and tools put together to create a ready to use Digital Twins.

e

Private | Common

These reusable assets are only visible to you. Other users can not use these assets in their
digital twins. .
Selection

ch by name

Yafem

YaFEM is an open-source finite
element software

ADD CLEAR PROCEED

Unlike the Library page, this preview page uses digital twin assets stored in a GitLab repository. New digital twins can be composed by

selecting the required library assets.

-16/249 - Copyright © 2022 - 2026 The INTO-CPS Association

The Digital Twin as a Service

2.3.1 DTaaS Website Screenshots

»

e

Functions Models Tools

Data | Digital Twins

These are ready to use digital twins created by one or more users. These digital twins can be reconfigured later for

specific use cases.

Private | Common

These reusable assets are only visible to you. Other users can not
use these assets in their digital twins.

Q, | Search by name

Hello world

The hello world digital twin (DT)

is a simple demonstrative model
designed to introduce the basic

concepts of a DT.

DETAILS ADD

Runner

Use DT Runner to execute
commands.

DETAILS ADD

Yafem demo

Mass spring damper

The mass spring damper digital
twin (DT) comprises two mass
spring dampers and
demonstrates how a co-

DETAILS REMOVE

Shm devops

This project creates a fully-
functional demo of CP-SENS

project.
DETAILS ADD

Upon clicking Proceed button, the digital twins create tab is opened.

Digital Twins Preview Page

Selection

¢ digital_twins/mass-spring-damper

CLEAR

PROCEED

The Digital Twins Preview Page provides means of managing digital twins using the DevOps methodology. This page has three tabs,
namely Create, Manage and Execute.

CREATE TAB

The library assets selected will be used on the Create Tab for creating new digital twins. The new digital twins are saved in the linked

GitLab repository. Remember to add valid .gitlab-ci.ynl configuration as it is used for execution of digital twin.

-17/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

2.3.1 DTaaS Website Screenshots

The Digital Twin as a Service

»*»

This page demonstrates integration of DTaaS with GitLab CI/CD workflows. The feature is experimental and requires certain GitLab setup in order for it to

work.
e
-_n
ap Create | Manage Execute
23
Create and save new digital twins. The new digital twins are saved in the linked gitlab repository. Remember to add valid ".gitlab-ci.yml' configuration as it is
used for execution of digital twin.
Insert digital twin name
Composite-DT
ADD NEW FILE EDITOR PREVIEW
DELETE FILE RENAME FILE
1 image: ubuntu:20.04
v Description 2
3 stages:
description.md 4 - create
5 - execute
README.md
6 - clean
v Configuration 7
8 create_mass-spring-damper:
.gitlab-ci.yml 9 stage: create
fia.i 10 script:
conftig.json 11 - cd digital_twins/mass-spring-damper
v Lifecycle 12 - chmod +x lifecycle/create
13 - lifecycle/create
execute 14 tags:
. 15 - $RunnerTag
mass-spring-damper 16
configuration 17 execute_mass-spring-damper:
. . 18 stage: execute
.gitlab-ci.yml 19 script:
cosim.json 20 - cd digital_twins/mass-spring-damper
21 - chmod +x lifecycle/execute
time.json
CANCEL SAVE
MANAGE TAB

Complete descriptions of digital twins can be read.

-18/249 - Copyright © 2022 - 2026 The INTO-CPS Association

The Digital Twin as a Service

2.3.1 DTaaS Website Screenshots

b

Create | Manage ‘ Execute

This page demonstrates integration of DTaaS with GitLab CI/CD workflows. The feature is experimental and requires certain GitLab setup in order for it to work.

I3

Q_ | Search by name

Hello world
The hello world digital twin (DT) is a

simple demonstrative model designed
to introduce the basic concepts of a DT.

DETAILS | RECONFIGURE l§ DELETE

Yafem demo

Execute YaFEM demo in devops pipeline
of DTaaS.

DETAILS | RECONFIGURE j§ DELETE

Mass spring damper

The mass spring damper digital twin
(DT) comprises two mass spring
dampers and demonstrates how a co-
simulation based DT can be used within

DETAILS B RECONFIGURE j§ DELETE

Explore, edit and delete existing digital twins. The changes get saved in the linked gitlab repository.

Runner

Use DT Runner to execute commands.

DETAILS | RECONFIGURE § DELETE

Shm devops

This project creates a fully-functional
demo of CP-SENS project.

DETAILS | RECONFIGURE i DELETE

Copyright © The INTO-CPS Association 2026.

Thanks to Material-Ul for the Dashboard template, which was the basis for our React app.

If necessary, a digital twin can be deleted, removing it from the workspace along with all associated data. Digital twins can also be
reconfigured.

Reconfigure Mass spring damper

v Description
README.md
description.md

v Configuration
.gitlab-ci.yml
cosim.json
time.json

v Lifecycle
analyze
clean
create
evolve
execute
save

terminate

Edit Files

1

"logVariables":{
"{msd2}.msd2i": ["

1

"parameters": {
"{msd2}.msd2i.
"{msd2}.msd2i.
"{msd2}.msd2i.
"{msd2}.msd2i.
"{msd2}.msd2i.

i

"algorithm™:{

“"type”
"size":0.001

3

"loggingOn": false,

"{msd2}.msd2i.
"{msd1}.msd1i.fk"

": 1.0,

£,
g a0,
g a0,

"overrideloglevel™: "INFO"

": 1.0

"fixed-step"”,

CANCEL SAVE

EXECUTE TAB

Digital Twins can be executed using GitLab CI/CD workflows. Multiple digital twins can be executed simultaneously.

-19/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

The Digital Twin a

(¢]

Finally logout

The Digital Twin as a Service

C @

x o+

O B = dtaas-digitaltwin.com

&

The Digital Twin as a Service

2.3.1 DTaaS Website Screenshots

120 R W5

This page demonstrates integration of DTaaS with GitLab CI/CD workflows. The feature is experimental and requires certain GitLab setup in order for it to work.

Create Manage Execute

Execute existing digital twins using CI/CD pipelines of the linked gitlab repository. Availability of gitlab runners is required for execution of digital twins.

Q_ | Search by name
Custom twin

this is a custom twin.

START HISTORY

Custom twin2

this is a custom twin readme.

START HISTORY

Hello world windows

The hello world windows digital twin
(DT) is a simple demonstrative model
designed to introduce the basic
concepts of a DT.

START HISTORY

Hello world

The hello world digital twin (DT) is a
simple demonstrative model designed
to introduce the basic concepts of a DT.

3
START HISTORY

Mass spring damper 2

The mass spring damper digital twin
(DT) 2 comprises two mass spring
dampers and demonstrates how a co-
simulation based DT can be used within

START HISTORY

X | The Digital Twin as a Service

Mass spring damper

The mass spring damper digital twin
(DT) comprises two mass spring
dampers and demonstrates how a co-

simulation based DT can be used within

START HISTORY

New twin

HW2 description

Copyright © The INTO-CPS Association 2025.

Thanks to Material-Ul for the Dashboard template, which was the basis for our React app.

X |+

O ﬂ https://dtaas-digitaltwin.com/preview/digitaltwins

0% ¥

The Digital Twin as a Service

v = X

©® 06 92 ® 6

I}

¥

e

This page demonstrates integration of DTaa$S with gitlab CI/CD workflows. The feature is experimental and requires certain gitlab setup in order for it to work Account

Manage | Execute

Execute the Digital Twins using Gitlab CI/CD workflows.

Hello world

The hello world digital twin (DT) is a
simple demonstrative model designed
to introduce the basic concepts of a DT.

ART

Mass spring damper

The mass spring damper digital twin
(DT) comprises two mass spring
dampers and demonstrates how a co-

simulation based DT can be used within

-

The browser must be closed to completely exit the DTaa$ software platform.

-20/249 -

Logout

Copyright © 2022 - 2026 The INTO-CPS Association

2.3.2 Settings

2.3.2 Settings

Settings are important both during initial DTaaS setup and during use when working with different configurations. All the most important
settings have been consolidated on one page for both of these scenarios.

J- Changing Settings

The parameters used for sending and receiving information to the storage and execution services (e.g., GitLab) may need adjustment to
match the infrastructure. Navigation to Account using the top-right purple [.{ icon followed by selection of the Settings tab displays the
following adjustable parameters:

The Digital Twin as a Service x +

<« C O B 2@ dtaas-digitaltwin.com,

= The Digital Twin as a Service

»

Profile | Settings

H

Settings

e

Edit the profile on SSO OAuth Provider.

Application Settings

Group Name DT Directory

DTaaS digital_twins

The group name used for GitLab operations Directory for Digital Twin files

Common Library Project name Runner Tag

common linux

Project name for the common library Tag used for GitLab CI runners (e.g., linux, windows)
Branch Name

master

Default branch name for GitLab projects

¢ RESET TO DEFAULTS B SAVE SETTINGS

Copyright © The INTO-CPS Association 2025.

Thanks to Material-Ul for the Dashboard template, which was the basis for our React app

1. Group Name
2. DT Directory
3. Common Library Project name
4. Runner Tag
5. Branch Name
Following is a description of what each parameter does.

GROUP NAME

The Group Name denotes the highest level of organizational abstraction concerned with on the storage service, namely Groups. A GitLab
group is required to use the DTaaS. Within the group, projects reside, which must match the usernames of system users. More information
about the file organization is available. This parameter must be set to the case-insensitive name of the group.

Default: DTaaS

-21/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.3.2 Settings

COMMON LIBRARY PROJECT NAME

One project within the group serves as the Digital Twins Library. Through the DTaasS, the files inside the Library are accessible to all users
and can be copied to individual user projects as needed. This parameter specifies the project name of the Library, and must match that
name.

Default: common

DT DIRECTORY

Within the common library and user projects, files related to Digital Twins are stored within a designated folder. This is the name chosen
for that folder.

Default: Digital Twins

BRANCH NAME

This parameter determines which branch to search for data (Twins, Functions, etc.) within user and library projects. This parameter also
determines which branch's Digital Twins are executed.

Default: master

RUNNER TAG

The (GitLab) runners responsible for executing Digital Twin code must be associated with a tag. Only one tag can be specified, and it
cannot be left blank, or the job of running the twin will not be processed. This is a limitation of the DTaaS.

Default: linux

1Y) Saving and Resetting your changes

When satisfied with the changes, SAVE SETTINGS must be pressed for them to persist after leaving the Settings page. If a mistake was
made, the settings can be reset to their default values by pressing the RESET TO DEFAULTS button. The reset values are saved
automatically, so additional saving is not required. The Saving and Resetting buttons on the page:

(O RESET TO DEFAULTS B SAVE SETTINGS

The default values can be found and modified in the code if needed.

Return to the DevOps pages (i.e., Digital Twin Preview) is now possible. Refreshing ensures fresh data from the remote repository is
fetched, and the Digital Twins should be visible, ready to be executed, edited, and shared.

€ Summary

This document has described how to edit the settings for initializing the DTaaS to a project and for continuous use (i.e., modifying Runner
Tag and Branch). The need to save changes and how to return to default values if a mistake is made have been discussed.

-22/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.4 Reusable Assets

2.4 Reusable Assets

2.4.1 Reusable Assets

The reusability of digital twin assets facilitates efficient work with digital twins. Reusability of assets is a fundamental feature of the
platform[1].

Kinds of Reusable Assets

The DTaaS$ platform categorizes all reusable library assets into six categories:

.

‘Software Tools and ll
Frameworks |-

Digital Twins

external world
(including physical twin)

DATA

The data sources and sinks available to a digital twins. Typical examples of data sources are sensor measurements from Physical Twins,
and test data provided by manufacturers for calibration of models. Typical examples of data sinks are visualization software, external
users and data storage services. There exist special outputs such as events, and commands which are akin to control outputs from a Digital
Twin. These control outputs usually go to Physical Twins, but they can also go to another Digital Twin.

MODELS

The model assets are used to describe different aspects of Physical Twins and their environment, at different levels of abstraction.
Therefore, it is possible to have multiple models for the same Physical Twin. For example, a flexible robot used in a car production plant
may have structural model(s) which will be useful in tracking the wear and tear of parts. The same robot can have a behavioural model(s)
describing the safety guarantees provided by the robot manufacturer. The same robot can also have a functional model(s) describing the
part manufacturing capabilities of the robot.

TOOLS

The software tool assets are software used to create, evaluate and analyze models. These tools are executed on top of a computing
platforms, i.e., an operating system, or virtual machines like Java virtual machine, or inside docker containers. The tools tend to be
platform specific, making them less reusable than models. A tool can be packaged to run on a local or distributed virtual machine
environments thus allowing selection of most suitable execution environment for a Digital Twin. Most models require tools to evaluate
them in the context of data inputs. There exist cases where executable packages are run as binaries in a computing environment. Each of
these packages are a pre-packaged combination of models and tools put together to create a ready to use Digital Twins.

-23/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.4.1 Reusable Assets

FUNCTIONS

The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and
functions can be used to create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to their
use; functions written by domain experts along with right data inputs can make model calibration an achievable goal. Another use of
functions is to process the sensor and actuator data of both Physical Twins and Digital Twins.

DIGITAL TWINS

These are ready to use digital twins created by one or more users. These digital twins can be reconfigured later for specific use cases.

File System Structure

Each user has their assets put into five different directories named above. In addition, there will also be common library assets that all
users have access to. A simplified example of the structure is as follows:

1 workspace/
2 data/
3 datal/ (ex: sensor)
4 filename (ex: sensor.csv)
5 README .md
6 data2/ (ex: turbine)
7 README.md (remote source; no local file)
8
9 digital_twins/
10 digital_twin-1/ (ex: incubator)
11 config (yaml and json)
12 README.md (usage instructions)
13 description.md (short summary of digital twin)
14 Lifecycle/ (directory containing Llifecycle scripts)
15 digital_twin-2/ (ex: mass spring damper)
16 config (yaml and json)
17 README.md (usage instructions)
18 description.md (short summary of digital twin)
19 Lifecycle/ (directory containing Llifecycle scripts)
20 digital_twin-3/ (ex: model swap)
21 config (yaml and json)
22 README.md (usage instructions)
23 description.md (short summary of digital twin)
24 Lifecycle/ (directory containing Llifecycle scripts)
25 200
26 functions/
27 functionl/ (ex: graphs)
28 filename (ex: graphs.py)
29 README .md
30 function2/ (ex: statistics)
31 filename (ex: statistics.py)
32 README . md
33 200
34 models/
35 modell/ (ex: spring)
36 filename (ex: spring.fmu)
37 README .md
38 model2/ (ex: building)
39 filename (ex: building.skp)
40 README . md
41 model3/ (ex: rabbitmq)
42 filename (ex: rabbitmg.fmu)
» README.md
44
45 tools/
46 tooll/ (ex: maestro)
47 filename (ex: maestro.jar)
48 README . md
49 000
50 common/
51 data/
52 functions/
53 models/
54 tools/

b

The DTaaS is agnostic to the format of assets. The only requirement is that they are files which can be uploaded on the Library page.
Directories can be compressed as single files and uploaded. The files can be decompressed into directories from a Terminal or xfce Desktop
available on the Workbench page.

A recommended file system structure for storing assets is also available in DTaaS examples.

- 24/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS-examples

2.4.1 Reusable Assets

Upload Assets

Users can upload assets into their workspace using the Library page of the website.

The Digital Twin as a Service X + v — X
<« C QO B https://dtaas-digitaltwin.com/Library?code=70916853856d2160cacc8f5{793b9c5c0120c1616a46793929¢ 90% Tp ©® 0@ 92 3 ® 6 O =

The Digital Twin as a Service

» Functions = Models Tools Data Digital Twins
- The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and functions can be used to

create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to their use; functions written by domain experts
along with right data inputs can make model calibration an achievable goal. Another use of functions is to process the sensor and actuator data of both
Physical Twins and Digital Twins.

Private = Common

These reusable assets are only visible to you. Other users can not use these assets in their digital twins.

Workspace ODocs | Open Tool ~

Files Running Clusters Nbextensions
Select items to perform actions on them. <> git] Upload ew~ &
(Jo + M/ functions Name ¥ LastModified = File size
O. seconds ago

The notebook list is empty.

Navigation into a directory followed by clicking on the upload button allows uploading files or directories into the workspace. These
assets then become available in all workbench tools. New assets can also be created on the page by clicking on the new dropdown menu.
This simple web interface allows creation of text-based files. Other files must be uploaded using the upload button.

The user workbench provides the following services:

* Jupyter Notebook and Lab
* VS Code
* XFCE Desktop Environment available via VNC

» Terminal

Users can also bring DT assets into user workspaces from external sources using any of the above-mentioned services. Developers using git
repositories can clone from and push to remote git servers. Users can also use widely-used file transfer protocols such as FTP and SCP to
bring the required DT assets into their workspaces.

References

[1]: Talasila, Prasad, et al. "Composable digital twins on Digital Twin as a Service platform." Simulation 101.3 (2025): 287-311.

-25/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.4.2 Library Microservice

2.4.2 Library Microservice

The lib microservice is responsible for handling and serving the contents of library assets of the DTaaS platform. It provides API endpoints
for clients to query, and fetch these assets.

This document provides instructions for using the library microservice.
The assets page describes suggested storage conventions for library assets.

Once assets are stored in the library, they become available in the user workspace.

Application Programming Interface (API)
The lib microservice application provides services at two end points:
GraphQL API Endpoint: http://foo.com/Lib

HTTP Endpoint: http://foo.com/Lib/files

HTTP PROTOCOL
Endpoint: Llocalhost:PORT/Lib/files
This option needs to be enabled with -H http.json flag. The regular file upload and download options become available.

Here are sample screenshots.

The Digital Twin as a Service X The Digital Twin as a Service X | &) Draa Fileserver - / X + v — X
& C @ QO B nttps//dtaas-digitaltwin.com/lib/files/ %0% ¥ ©® 0@ 9 2 @ ® & &4 =
WO/
name size date owner mode
TestUserDTaaS <dir> 28.10.2024 root rwx r-x r-x
. common <dir> 28.10.2024 root rwx r-x r-x
prasad <dir> 28.10.2024 root rwx r-x r-x
I template <dir> 28.10.2024 root WX r-x r-x
useri <dir> 28.10.2024 root rwx r-x r-x
~user2 <dir> 28.10.2024 root rWX r-x r-x
README . md 180b 28.10.2024 root rw- r-- r--
The Digital Twin as a Service X The Digital Twin as a Service X | & Drasrileserver - /TestUserDlaas/ X |+ v = X
« C O QO B hitpsy//dtaas-digitaltwin.com/lib/files/fs/TestUserDTaas/ 0% LY QO 9 2 Q4 ® 6@ 4 =

i ¢) /TestUserDTaaS/

name size date owner mode

.. <dir> --.--.---- Pt ittt
~ .workspace <dir> 28.10.2024 root rwx r-x r-x

common <dir> 28.10.2024 root rwx r-x r-x
~data <dir> 28.10.2024 root rwx r-x r-x

digital_twins <dir> 28.10.2024 root rwx r-x r-x
~ functions <dir> 28.10.2024 root WX r-x r-x

models <dir> 28.10.2024 root rwx r-x r-x
~ tools <dir> 28.10.2024 root rwx r-x r-x

GRAPHQL PROTOCOL
Endpoint: Llocalhost:PORT/Lib
The http://foo.con/Lib URL opens a GraphQL playground.

The query schema can be examined and sample queries can be tested there. GraphQL queries must be sent as HTTP POST requests to
receive responses.

-26/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.4.2 Library Microservice

The library microservice provides two API calls:

* Provide a list of contents for a directory

* Fetch a file from the available files

The API calls are accepted over GraphQL and HTTP API endpoints. The format of accepted queries is:

PROVIDE LIST OF CONTENTS FOR A DIRECTORY
To retrieve a list of files in a directory, use the following GraphQL query.
Replace path with the desired directory path.

send requests to: https://foo.com/lib

GraphQL query for list of contents

1 query {

2 ListDirectory(path: "userl") {
3 repository {
4 tree {

5 blobs {

6 edges {
7 node {
8 nanme
9 type
10 }

11 }

12 }

13 trees {
14 edges {
15 node {
16 name
17 type
18 }

19 }

20 }

21 }

22 }

23 }

2%}

-27/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://foo.com/lib

GraphQL response for list of contents

© Nt WN

{
"data": {
"listDirectory": {
"repository": {
"tree": {
"blobs": {
"edges": []
I8
"trees": {
"edges": [
{
"node": {
"name": "common",
"type": "tree"
}
I8
{
"node": {
"name": "data",
"type": "tree"
}
g
{
"node": {
"name": "digital twins",
"type": "tree"
}
I8
{
"node": {
"name": "functions",
"type": "tree"
}
g
{
"node": {
"name": "models",
"type": "tree"
}
I8
{
"node": {
"name": "tools",
"type": "tree"
}
}
]
}
}
}
}
}
}

HTTP request for list of contents

0N U AW

POST /Lib HTTP/1.1

Host: foo.com

Content-Type: application/json
Content-Length: 388

{
"query":"query {\n ListDirectory(path: \"user1\") {\n repository {\n tree {\n
type\n Hn Hn Hn trees {\n edges {\n
\n Ao RAn Rn}t
}

HTTP response for list of contents

® N U A WN

HTTP/1.1 200 0K
Access-Control-Allow-Origin:
Connection: close
Content-Length: 306
Content-Type: application/json; charset=utf-8
Date: Tue, 26 Sep 2023 20:26:49 GMT
X-Powered-By: Express

*

2.4.2 Library Microservice

edges {\n node {\n name\n
name\n type\n Hn Hn }

{"data":{"listDirectory":{"repository":{"tree":{"blobs":{"edges":[]},"trees":{"edges": [{"node":{"name":"data", "type":"tree"}},{"node": {"name": "digital twins","type":"tree"}},{"node":
{"name":"functions","type":"tree"}},{"node": {"name": "models","type":"tree"}},{"node": {"name": "tools","type":"tree"}}1}}}}1}}

FETCH A FILE FROM THE AVAILABLE FILES

This query receives directory path and send the file contents to user in response.

To check this query, create a file files/user2/data/welcome.txt with content of hello world .

- 28/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

GraphQL query for fetch a file

1
2
3
4
5
6
7
8
9

10
11
12
13

query {
readFile(path: "user2/data/sample.txt") {
repository {
blobs {
nodes {
name
rawBlob
rawTextBlob
}
}
}
}
}

GraphQL response for fetch a file

© NG A WN

11
12
13
14
15
16
17

{
"data": {
"readFile": {
"repository": {
"blobs": {
"nodes": [
{
"name": "sample.txt",
"rawBlob": "hello world",
"rawTextBlob": "hello world"
}
]
}
}
}
}
}

HTTP request for fetch a file

N U A WwN R

POST /Lib HTTP/1.1

Host: foo.com

Content-Type: application/json
Content-Length: 217

{

"query":"query {\n readFile(path: \"user2/data/welcome.txt\") {\n repository {\n
rawTextBlob\n Hn Hn Hn Hn}"
}

HTTP response for fetch a file

© N U AW

HTTP/1.1 200 0K
Access-Control-Allow-0rigin:
Connection: close
Content-Length: 134
Content-Type: application/json; charset=utf-8
Date: Wed, 27 Sep 2023 09:17:18 GMT
X-Powered-By: Express

*

blobs {\n

nodes {\n

name\n

{"data":{"readFile":{"repository":{"blobs": {"nodes": [{"name": "welcome.txt","rawBlob":"hello world","rawTextBlob":"hello world"}]}}}}}

2.4.2 Library Microservice

rawBlob\n

The path refers to the file path to look at: For example, user1 looks at files of user1; user1/functions looks at contents of functions/ directory.

-29/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

2.4.3 Reusable Assets and DevOps

2.4.3 Reusable Assets and DevOps

DevOps has been a well established software development practice. We are bringing out an experimental feature of integration DevOps in
the DTaaS platform.

This feature requires specific installation setup.

1. Integrated GitLab installation
2. A valid GitLab repository for the logged in user. Please see an example repository. You can clone this repository and customize to your needs.

3. A linked GitLab Runner to the user GitLab repository.

Once these requirements are satisfied, the Library page shows all the reusable assets available stored in the linked GitLab repository. An
empty list is shown if there are no assets of a specific category.

The Digital Twin as a Service

Functions = Models Tools Data Digital Twins

The functions responsible for pre- and post-processing of: data inputs, data outputs, control outputs. The data science libraries and functions can be used to
create useful function assets for the platform. In some cases, Digital Twin models require calibration prior to their use; functions written by domain experts
along with right data inputs can make model calibration an achievable goal. Another use of functions is to process the sensor and actuator data of both
Physical Twins and Digital Twins.

Private | Common

These reusable assets are only visible to you. Other users can not use these assets in their digital
twins.

Selection

CLEAR PROCEED

The page gets populated with any existing assets. All available DTs are shown in the following figure.

-30/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://en.wikipedia.org/wiki/DevOps
https://gitlab.com/dtaas/user1

2.4.3 Reusable Assets and DevOps

The Digital Twin as a Service

Functions Models Tools Data | Digital Twins

These are ready to use digital twins created by one or more users. These digital twins can be reconfigured later for specific use cases.

‘ Private ’ Common

These reusable assets are only visible to you. Other users can not use these assets in their digital

twins. .
Selection
Q Search by name
. digital_twins/mass-spring-damper
Hello world Mass spring damper Runner
The hello world digital twin (DT) The mass spring damper A
is a simple demonstrative model digital twin (DT) comprises Use DT Runner to execute
designed to introduce the basic two mass spring dampers and commands.
concepts of a DT. demonstrates how a co- v
Shm devops Yafem demo

This project creates a fully-
functional demo of CP-SENS
project.

Execute YaFEM demo in devops
pipeline of DTaaS.

DETAILS m DETAILS

Any existing DT asset can be selected and it gets added to the Selection pane on the right. After selecting all the required assets, you can
click on Proceed button to transition to DT create stage

-31/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5 Digital Twins

2.5 Digital Twins

2.5.1 Create a Digital Twin

The first step in digital twin creation involves utilizing the available assets within the workspace. For assets or files residing on a local
computer that need to be accessible in the DTaaS workspace, the instructions provided in library assets should be followed.

Dependencies exist among the library assets. These dependencies are illustrated below.

/ mandatory \

|
p
I

) (
_ Software Tools and
I A
consume)
produce DT config evaluate

X

Models

J

A\ 4

external world
(including physical twin)

| F
Data ‘ !
—

/

A digital twin can only be created by linking assets in a meaningful way. This relationship can be expressed using the following
mathematical equation:

where D denotes data, M denotes models, F denotes functions, T denotes tools, denotes DT configuration, and is a symbolic notation for a
digital twin itself. The expression denotes composition of a DT from D, M, T, and F assets. The indicates zero or more instances of an asset,
and indicates one or more instances of an asset.

The DT configuration specifies the relevant assets to use and the potential parameters to be set for these assets. When a DT requires
RabbitMQ, InfluxDB, or similar services supported by the platform, the DT configuration must include access credentials for these services.

This generic DT definition is based on DT examples observed in practice. Deviation from this definition is permissible. The only
requirement is the ability to execute the DT from either the command line or a graphical desktop environment.

b

For users new to Digital Twins who may not have distinct digital twin assets but rather a single directory containing all components, it is

recommended to upload this monolithic digital twin into the digital_twin/your_digital twin_name directory.

Example

The Examples repository contains a co-simulation setup for a mass-spring-damper system. This example demonstrates the application of
co-simulation techniques for digital twins.

-32/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS-examples

2.5.1 Create a Digital Twin

The file system contents for this example are:

1 workspace/
2 data/
3 mass-spring-damper
4 input/
5 output/
6
7 digital_twins/
8 mass-spring-damper/
9 cosim. json
10 time. json
11 Lifecycle/
12 analyze
13 clean
14 evolve
15 execute
16 save
17 terminate
18 README . md
19
20 functions/
21 models/
22 MassSpringDamperl. fmu
23 MassSpringDamper2. fmu
24
25 tools/
26 common/
27 data/
28 functions/
29 models/
30 tools/
31 maestro-2.3.0-jar-with-dependencies. jar

The workspace/data/mass-spring-damper/ directory contains input and output data for the mass-spring-damper digital twin.
The two FMU models required for this digital twin are located in the models/ directory.

The co-simulation digital twin requires the Maestro co-simulation orchestrator. As this is a reusable asset for all co-simulation-based DTs,
the tool has been placed in the common/tools/ directory.

The digital twin configuration is specified in the digital twins/mass-spring-damper directory. The co-simulation configuration is defined in two
JSON files: cosim.json and time.json.Documentation for the digital twin can be placed in digital twins/mass-spring-damper/document.md .

The launch program for this digital twin is located in digital twins/mass-spring-damper/Llifecycle/execute . This launch program executes the co-
simulation digital twin, which runs until completion and then terminates. The programs in digital twins/mass-spring-damper/Lifecycle are
responsible for lifecycle management of this digital twin. The lifecycle page provides further explanation of these programs.

Fxecution of a Digital Twin

A frequent question arises on the run time characteristics of a digital twin. The natural intuition is to say that a digital twin must operate as
long as its physical twin is in operation. If a digital twin runs for a finite time and then ends, can it be called a digital twin? The answer is
aresounding YES. The Industry 4.0 usecases seen among SMEs have digital twins that run for a finite time. These digital twins are often run at
the discretion of the user.

Execution of this digital twin involves the following steps:

1. Navigate to the Workbench tools page of the DTaaS website and open VNC Desktop. This opens a new tab in the browser.

2. A page with VNC Desktop and a connect button is displayed. Click on Connect to establish a connection to the Linux Desktop of the
workspace.

3. Open a Terminal (the black rectangular icon in the top left region of the tab) and enter the following commands.
4. Download the example files by following the instructions provided in the examples overview.

5. Navigate to the digital twin directory and execute:

1 cd /workspace/examples/digital_twins/mass-spring-damper
2 Lifecycle/execute

The final command executes the mass-spring-damper digital twin and stores the co-simulation output in data/mass-spring-damper/output .

-33/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.2 Digital Twin Lifecycle

2.5.2 # Digital Twin Lifecycle

Physical products in the real world undergo a product lifecycle. A simplified four-stage product lifecycle is illustrated here.
A digital twin tracking physical products (twins) must evolve in conjunction with the corresponding physical twin.

The possible activities undertaken in each lifecycle phase are illustrated in the figure.

gy

bee

Production
Phase

- Development tools

Creation /
Design Phase

Operations Phase Disposal Phase
- Digital Twin - Digital Twin

platform, ex: asset platform, Al / ML
management tools
- Al/ MLtools - Data collection
- Simulation for and stockage
prevention

- Design Tools

- Simulation
Tools

- Testing tools
- Simulation tools

(Ref: Minerva, R, Lee, GM and Crespi, N (2020) Digital Twin in the IoT context: a survey on technical features, scenarios and architectural
models. Proceedings of the IEEE, 108 (10). pp. 1785-1824. ISSN 0018-9219.)
Lifecycle Phases

The four-phase lifecycle has been extended to a lifecycle with eight phases. The new phase names and the typical activities undertaken in
each phase are outlined in this section[1].

A DT lifecycle consists of explore, create, execute, save, analyse, evolve and terminate phases.

Phase Main Activities

explore Selection of suitable assets based on user requirements and verification of their compatibility for DT creation.
create Specification of DT configuration. For existing DTs, no creation phase is required at the time of reuse.

execute Automated or manual execution of a DT based on its configuration. The DT configuration must be verified before

starting execution.

analyse Examination of DT outputs and decision-making. Outputs may include text files or visual dashboards.
evolve Reconfiguration of DT primarily based on analysis results.

save Preservation of DT state to enable future recovery.

terminate Cessation of DT execution.

A digital twin faithfully tracking the physical twin lifecycle must support all the phases. Digital twin engineers may also add additional
phases to their implementations. Consequently, the DTaas$ platform is designed to accommodate the needs of diverse DTs.

A potential linear representation of the tasks undertaken in a digital twin lifecycle is shown here.

- 34/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.2 Digital Twin Lifecycle

Author DT Components (on or off platform)

Consolidate andtplore DT Components (like a marketplace)

Create / Configure new DT (like a Lego playground)

Execute one# Scenario Analysis
(with a click) (execute many DTs with a click)

Analyse (using data science tools)
Save(any of DT components)
Evolve

Terminate

This representation shows only one possible pathway. The sequence of steps may be altered as needed.

It is possible to map the lifecycle phases to the Build-Use-Share approach of the DTaaS platform.

Author DT Components (on or off platform)

Consohdategd E)%)re DT CompOB ﬂf’ ldplace
- -
/

¥

310YS

Save(any of s)
Evolve

Terminate

Although not mandatory, maintaining a matching code structure facilitates DT creation and management within the DTaa$S platform. The
following structure is recommended:

1 workspace/
2 digital_twins/

3 digital-twin-1/
4 Lifecycle/

5 analyze

6 clean

7 evolve

8 execute

9 save

0

1 terminate

-35/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.2 Digital Twin Lifecycle

A dedicated program exists for each phase of the DT lifecycle. Each program can be as simple as a script that launches other programs or
sends messages to a live digital twin.

e The recommended approach for implementing lifecycle phases within DTaaS is to create scripts. These scripts can be
implemented as shell scripts.

Example Lifecycle Scripts

The following example programs/scripts demonstrate management of three phases in the lifecycle of the mass-spring-damper DT.

lifecycle/execute

1 #1/bin/bash

2 mkdir -p /workspace/data/mass-spring-damper/output

3 #cd ..

4 java -jar /workspace/common/tools/maestro-2.3.0-jar-with-dependencies.jar \
5 import -output /workspace/data/mass-spring-damper/output \

6 --dump-intermediate sgl cosim.json time.json -i -vi FMI2 \

7 output-dir>debug. log 2>&1

The execute phase utilizes the DT configuration, FMU models, and Maestro tool to execute the digital twin. The script also stores the output
of co-simulation in /workspace/data/mass-spring-damper/output .

A DT may not support a specific lifecycle phase. This intention can be expressed with an empty script and a helpful message if deemed
necessary.

lifecycle/analyze

1 #!/bin/bash
2 printf "operation is not supported on this digital twin"

The lifecycle programs can invoke other programs in the codebase. In the case of the Llifecycle/terminate program, it calls another script to
perform the necessary operations.

lifecycle/terminate

1 #!/bin/bash
2 Lifecycle/clean

References

[1]: Talasila, Prasad, et al. "Composable digital twins on Digital Twin as a Service platform." Simulation 101.3 (2025): 287-311.

- 36/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

2.5.3 DevOps Preview
Digital Twin File Structure in GitLab

We use GitLab as a file store for performing DevOps on Digital Twins. The user interface page is a front-end for this gitlab-backed file
storage.

Each DTaasS installation comes with an integrated GitLab. There must be a GitLab group named dtaas and a GitLab repository for each
user where repository name matches the username. For example, if there are two users, namely userl and user2 on a DTaa$ installation,
then the following repositories must exist on the linked GitLab installation.

1 https://foo.com/gitlab/dtaas/common.git
2 https://foo.com/gitlab/dtaas/userl.git
3 https://foo.com/gitlab/dtaas/user2.git

ﬁrning

The assets being displayed on the Library preview page come from the master branch of the backing GitLab project. Please create a branch
named master and make it the default branch. This must be done for all the user repositories including the common repository.

Each user repository must also have a specific structure. The required structure is as follows.

1 <username>/
2 f—— common/

3 |—— data/

4 f—— digital_twins/
5 f—— functions/

6 f—— models/

7 f—— tools/

8 f—— .gitlab-ci.yml
9 L—— README.md

This file structure follows the same pattern user sees on the existing Library page.

DIGITAL TWIN STRUCTURE

The digital_twins folder contains DTs that have been pre-built by one or more users. The intention is that they should be sufficiently
flexible to be reconfigured as required for specific use cases.

Let us look at an example of such a configuration. The dtaas/userl repository on gitlab.com contains the digital_twins directory with a
hello_world example. Its file structure looks like this:

hello_world/

f—— Lifecycle/ (at least one Llifecycle script)

| F— clean

| F—— create

| —— execute

| —— terminate

f—— .gitlab-ci.yml (GitLab DevOps config for executing lifecycle scripts)
—— description.md (optional but is recommended)

—— README.md (optional but is recommended)

The Llifecycle directory here contains four files - clean, create, execute and terminate , which are simple BASH scripts. These correspond to
stages in a digital twin's lifecycle. Further explanation of digital twin is available on lifecycle stages.

-37/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.com/dtaas/user1
https://www.gnu.org/software/bash/

2.5.3 DevOps Preview

Digital Twins and DevOps

DevOps has been a well established software development practice. We are bringing out an experimental feature of integration DevOps in
the DTaaS.

This feature requires specific installation setup.

1. Integrated GitLab installation
2. A valid GitLab repository for the logged in user. Please see an example repository. You can clone this repository and customize to your needs.
3. Alinked GitLab Runner to the user gitlab repository.

DT LIFECYCLE

The DT preview implements the Create, Manage and Execute stages of a DT lifecycle. The suggested sequence of use for different lifecycle
stages are:

o >‘ execute
, Y
create terminate
R REREEEEEE --->[reconfigure execute
Discover Save data
Implement Close connection
Compose End execution

There are dedicated tabs for Create, Manage and Execute stages. The selection of DT assets for Create stage happens via Library preview
page. The Manage tab fulfills reconfigure feature. The Execute and Terminate are managed on the Execute tab.

CREATE TAB

The users select reusable DT assets and arrive on the Create tab. The following figure shows DT creation page after selecting mass-spring-
damper as a reusable asset for the new DT.

- 38/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://en.wikipedia.org/wiki/DevOps
https://gitlab.com/dtaas/user1

2.5.3 DevOps Preview

& C 25 dtaas-digitaltwin.com/preview/digitaltwins & Incognito

"H Duplicatea VDI @) Research Coordination @) Odin account creation ITL Bulletin The Syste @ Digital twinand the a.. @ Adobe Acrobat 3 All Bookmark
The Digital Twin as a Service A

* This page demonstrates integration of DTaaS with GitLab CI/CD workflows. The feature is experimental and requires certain GitLab setup in order for it to work.

o0

- Create | Manage Execute

e

Create and save new digital twins. The new digital twins are saved in the linked gitlab repository. Remember to add valid '.gitlab-ci.yml' configuration as it is
used for execution of digital twin.

Insert digital twin name

ADD NEW FILE EDITOR PREVIEW

> Description
> Configuration
Lifecycle

mass-spring-damper
configuration

CANCEL

The left-side menu shows the possibility of creating necessary structure and elements for a new DT. Each reusable asset selected for this
new DT appears on the left menu. Its configuration can be updated as well.

These files on the left menu correspond to three categories.

* Description: contains README.md providing comprehensive description of DT and description.md providing a brief description. The
brief description is shown in the DT tabs and clicking on the Details button shows the complete README.md The Details button is
available only on the Manage page.

* Configuration: Contains a .gitlab-ci.yaml for running the required lifecycle scripts and operations of the DT. Additional json and yaml
files can be added to create configuration for a new DT.

* Lifecycle: These are the DT lifecycle scripts.

The Add New File button can be used to add new files in all the three categories. Finally, click on SAVE button to save the new DT. Newly
created DTs become immediately available on the Manage and Execute tabs.

-39/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

MANAGE TAB

& Incognito

ITL Bulletin The Syste & Dic

The Digital Twin as a Service

This page demonstrates integration of DTaaS with GitLab CI/CD workflows. The feature is experimental and requires certain GitLab setup in order for it to work.

»

- Create | Manage @ Execute
22 Explore, edit and delete existing digital twins. The changes get saved in the linked gitlab repository.

Q, | Search by name

Hello world Mass spring damper Runner Shm devops
The hell d diaital oT The mass spring damper digital twin #
e hello world digital twin (DT) is a (DT) comprises two mass spring This project creates a fully-functional

dampers and demonstrates how a Use DT Runner to execute commands. demo of CP-SENS project.

co-simulation based DT can be used w

DETAILS @ RECONFIGURE i DELETE DETAILS | RECONFIGURE f§ DELETE DETAILS | RECONFIGURE | DELETE DETAILS | RECONFIGURE § DELETE

Yafem demo

simple demonstrative model designed
to introduce the basic concepts of a DT.

Execute YaFEM demo in devops pipeline
of DTaaS.

DETAILS [§ RECONFIGURE | DELETE

The manage tab allows for different operations on a digital twin:

* Checking the details (Details button)
* Delete (Delete button)

* Modify / Reconfigure (Reconfigure button)
A digital twin placed in the DTaa$ has a certain recommended structure. Please see the assets pag for an explanation and this example.

The information page shown using the Details button, shows the README.md information stored inside the digital twin directory.

The Digital Twin as a Service X | The Digital Twin as a Service X + v = X
C @ QO O hitpsy/dtaas-digitaltwin.com/preview/digitaltwins 80% 1Y ©® Q0@ 9 2 @ ® & o5 =

Mass Spring Damper

Overview

The mass spring damper digital twin (DT) comprises two mass spring dampers and demonstrates how a co-
simulation based DT can be used within DTaaS.

Example Diagram

-40/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS-examples/tree/main/digital_twins/mass-spring-damper

2.5.3 DevOps Preview

A reconfigure button opens an editor and shows all the files corresponding to a digital twin. All of these files can be updated. These files
correspond to three categories.

* Description

* Configuration

* Lifecycle
The Digital Twin as a Service X | The Digital Twin as a Service X -+ v — X
C O QO 8 hitpsy//dtaas-digitaltwin.com/preview/digitaltwins s0% 1Y Qo 9 2 | ® é‘ N =

Reconfigure Mass spring damper

v Description EDITOR
README.md

PREVIEW

description.md # Mass Spring Damper

v Configuration .
Overview
.gitlab-ci.yml|

The mass spring damper digital twin (DT) comprises two mass spring dampers

cosim.json and demonstrates how a co-simulation based DT can be used within DTaaS.

time.json ## Example Diagram

v Lifecycle
I[Mass Spring Damper System](mass-spring-damper_multibody_system.png)
analyze
Example Structure
clean

create There are two simulators included in the study, each representing a

mace enmina damman cuctam Tha finct cimulatan ralrnlatac +ha mace

CANCEL SAVE

EXECUTE TAB

The Digital Twi - s

(¢] O B = dtaas-digitaltwin.com

The Digital Twin as a Service

* This page demonstrates integration of DTaaS with GitLab CI/CD workflows. The feature is experimental and requires certain GitLab setup in order for it to work.
oo

- Create Manage Execute

k33

-

Execute existing digital twins using CI/CD pipelines of the linked gitlab repository. Availability of gitlab runners is required for execution of digital twins.

Q_ | Search by name

Hello world windows Hello world

The hello world windows digital twin
(DT) is a simple demonstrative model
designed to introduce the basic
concepts of a DT.

Custom twin Custom twin2
The hello world digital twin (DT) is a
simple demonstrative model designed
to introduce the basic concepts of a DT.

this is a custom twin. this is a custom twin readme.

START HISTORY

Mass spring damper 2

The mass spring damper digital twin
(DT) 2 comprises two mass spring
dampers and demonstrates how a co-
simulation based DT can be used within

START HISTORY

START HISTORY

Mass spring damper

The mass spring damper digital twin
(DT) comprises two mass spring
dampers and demonstrates how a co-

simulation based DT can be used within

START HISTORY

New twin

HW2 description

START HISTORY

Copyright © The INTO-CPS Association 2025.

-41/249 -

Thanks to Material-Ul for the Dashboard template, which was the basis for our React app.

Covar] o

Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

The execute tabs shows the possibility of executing multiple digital twins. Once an execution of digital twin is complete, you can see the
execution log as well.

Yafem demo log

a
execute_yafem ‘
Running with gitlab-runner 17.5.3 (12030cf4)
on dtaas-runner-overture t1_zagU2y, system ID: r_GcJTTuRRT1WRe
Preparing the "docker" executor
Using Docker executor with image ubuntu:24.04 ...

Pulling docker image ubuntu:24.04 ...

Using docker image sha256:bf16bdcff9c96b76a6d417bd8f0a3abe0e55c0ed9bdb3549e906834e2592fd5f for ubuntu:24.04 with

digest ubuntu@sha256:b59d21599a2b151e23eea5f6602f4af4d7d31c4e236d22bf0b62b86d2e386b8f ...

Preparing environment

Running on runner-t1zagu2y-project-2-concurrent-0 via 9e90c5018a4e...

Getting source from Git repository

Fetching changes with git depth set to 20...

Reinitialized existing Git repository in /builds/gitlab/dtaas/TestUserDTaaS/.git/

Checking out a8241698 as detached HEAD (ref is main)...

Removing digital_twins/yafem-demo/.venv/

Removing digital_twins/yafem-demo/requirements.txt

Removing digital_twins/yafem-demo/yafem-0.2.5-py3-none-any.whl o
CLOSE

-42/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

Setting Allowed Values

Some Setting values will cause problems if used. In this document we will have an in-depth look at the values that are allowed and values
that are not. We will also see some of the expected errors and finally go over some troubleshooting steps for this page.

If you want to understand what each parameter does, please read the settings document.

Note: You must have the appropriate access rights to all the resources that you connect to the application.

RUNNER TAG
« Allowed values

This parameter has to be a text string like "linux", "ubuntu”, "2" and match some Runner's tags on the execution service:

Assigned project runners

© > I L

linux

Multiple values, like "linux, windows" is not supported and will be treated as one tag.

* Not allowed values

If the Runner Tag field doesn't match a Runner, no jobs will be picked up and the job will hence timeout. If your twins unexpectedly
timeout, check that you have spelled the tag correctly.

No tag (i.e. a blank field) is permitted by some services like GitLab, meaning that any Runner that is configured to pick up tag-less jobs can
pick these jobs up. A limitation of DTaaS is that we require some tag. No tags, like other unallowed tags will be ignored.

* Visual examples

Runner Tag

linux

Tag used for GitLab ClI runners (e.qg., linux, windows)

Runner Tag

linux, windows

Tag used for GitLab Cl runners (e.qg., linux, windows)

Runner Tag

Tag used for GitLab Cl runners (e.qg., linux, windows)

-43/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

BRANCH
* Allowed values

The Branch field must be a text string matching a branch in the user and common library repositories. For example: "main" or "master":

dtaas / common

C common &

¥ main v common / | 4 v Find file Edit v

* Not allowed values

You should not leave this field empty or not matching some branch in both repositories. While technically allowed, this may cause errors
or unexpected behaviours.

Expected error:
An error occurred while fetching assets: GitbeakerRequestError: 404 Tree Not Found

* Visual examples

Branch Name

main

Default branch name for GitLab projects

Branch Name

foo

Default branch name for GitLab projects

Branch Name

]

Default branch name for GitLab projects

GROUP NAME
* Allowed values

The Group Name field again requires a text string, and it must further match some group in the storage service (e.g. GitLab).

Example:

DTaaS

-44/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

Explore / Groups

Explore groups

Below you will find all the groups that are public or internal. Contribute by requesting to join a group. Learn more.

‘ ORZ ’ Search or filter results... Q Created date v | ¥

% D dtaas & 0 Q26 &2

Group names are case insensitive on GitLab, but we recommend matching the case exactly for consistency and to remove it as a source of
error.

* Not allowed values

If the group doesn't exist or the field is left blank, you will experience errors upon accessing Digital Twins, etc. Make sure that you write
something here.

Expected error:
An error occurred while fetching assets: GitheakerRequestError: 404 Group Not Found

* Visual examples

Group Name

DTaaS

The group name used for GitLab operations

Group Name

foo

The group name used for GitLab operations

Group Name

[]

The group name used for GitLab operations

COMMON LIBRARY PROJECT NAME

* Allowed values The Common Library Project name parameter is a text string. It must correlate to the repository responsible for
keeping shared resources. Examples: "common" and "library":

-45/249 - Copyright © 2022 - 2026 The INTO-CPS Association

dtaas / common

C jcommon| &

¥ main v common / | 4 v

Failure to match a repository will break the DevOps page.

Expected error:

An error occurred while fetching assets: Error: Common project not found

* Not allowed values

2.5.3 DevOps Preview

Find file Edit v

You should not leave this field blank or have it not match some repository. It is inadvisable to have it match a user repository.

* Visual examples

Common Library Project name

common

Project name for the common library

Common Library Project name

foo

Project name for the common library

Common Library Project name

[

Project name for the common library

DT DIRECTORY

« Allowed values

Like the other fields, this must be a text string. It should match the name of the folder within the common library and most importantly

the user repository where the Digital Twins are stored.

-46/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

C common & |

¥ main v common /| + v Find file Edit v

Merge branch 'name-change' into 'main' e

: 299d6e62 [History
Prasad Talasila authored 2 years ago

Name Last commit Last update
F3data Add new directory 2 years ago
EI rename directory 2 years ago
£3 functions Update file function.txt 2 years ago
£3 models Add new directory 2 years ago
3 tools Add new directory 2 years ago
m+ README.md Initial commit 2 years ago

* Not allowed values

Do not leave this blank or erroneously mapped. This will lead to silent failure with the Digital Twins not loading or Digital Twins from a
previous set up to show up.

DT Directory

digital_twins

Directory for Digital Twin files

DT Directory

foo

Directory for Digital Twin files

DT Directory

1

Directory for Digital Twin files

-47/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

§ TROUBLESHOOTING
The Digital Twins are not showing up:
Verify that Group, Branch, common and DT directory all are configured exactly. like it is on the backend.
The Digital Twins are timing out:
Verify that the Runner Tag parameter is not a list of tags, that the runner is active and matches its tag.
€ SUMMARY

We have specified the possible values to correctly connect DTaaS with your storage and service instances and pitfalls. The key insight is
not to leave any of the fields blank, having them be of the text string format and properly corresponding to your services and runners.
Some troubleshooting steps have further been provided to overcome common hurdles.

-48/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

Capabilities

Other than creating and editing Digital Twins, you are naturally also able to run them and adjust their execution parameters. The DTaaS
allows you to run multiple Digital Twins at the same time and even change settings while they are running, without needing to worry
about manually having to fetch your data: They will load when you return to whichever branch and group you ran them on. The settings
include both repository and execution options, while all twins can easily be run and checked from the Execution tab under the Preview

page.
Read more about Settings, Setting Values and Concurrent Execution on their respective pages.

Now we will go through the specific capabilities of each of these features.

SETTINGS

The table below describes the different test setups (valid, invalid, etc.), the resultant behavior and what we deemed to be expected
behavior across the features. Following every table, there is a summary and list of potential problems.

| Setting | Expected behaviour | Observed behaviour | Test method | | Runner tag valid | Job is picked up by runner with relevant tag
and completes without error. | [74 Same as expected. | Goto Preview page. Go to Account. Change Runner Tag. Go back one page. Execute
Hello world twin. Verify runner name based on tag (repeat with 2nd runner) | | Runner tag invalid | Job is never picked up. Runner times
out after 10 minutes. | [74 Same as expected. | Change Runner Tag to "foo" (inexistent). Run Hello World twin. | | Runner Tag no value |
Configuration saves. Running a twin succeeds if appropriate runner exists. | { Not picked up, times out. | Set run_untagged = false in local
gitlab runner config. Mark "Run untagged jobs" as true in gitlab instance (https://dtaas-digitaltwin.com/gitlab). Change Runner Tag to the
empty string on application. Run Hello world twin. | | Branch valid | Job runs with the correct branch and completes without error. | [74
Same as expected. | Make new branch in GitLab instance project. Change Branch name to "master-2". Execute Hello world twin. Verify ref
matches branch in execution log. | | Branch invalid | Execution tab gracefully displays no twins as branch doesn't exist. | { IF twins are
not cached: Throws an error displayed to user: An error occurred while fetching assets: GitbeakerRequestError. IF twins are cached: Job
fails. Snackbar says "Execution error for [twin name]". No log available in execution history. | Change Branch name to

"master-1" (inexistent). IF twins are cached: Execute Hello world twin. | | Group name valid | The twin is runnable. | [/ Same as
expected. | Click "reset to defaults". Run twin. | | Group name invalid | Execution tab gracefully displays no twins as group doesn't exist.

| ¢ Same as Branch invalid case. | Change group name to "Foo" (inexistent). IF twins are cached: Execute Hello world twin. | | Common
name valid | Library twins are visible. | [/4 Same as expected. Private twins also show up in Common twins. | Click "reset to defaults". Goto
library. Goto common twins. Inspect twin visibility. | | Common name invalid | Library twins gracefully not visible. |){ Displays error: An
error occurred while fetching assets: Error: Common project foo not found | Change Common Library Project name to "Foo" (inexistent). Goto
common twins. Inspect visibility. | | DT directory valid | Twins are visible. | [V4 Same as expected. | Click "reset to defaults". Goto library.
Goto Execution tab. Inspect twin visibility. | | DT directory name invalid | Twins gracefully not visible. | Y Depends on the cache. Displays
error if there is none: An error occurred while fetching assets: GitbeakerRequestError | Change Common DT directory name to

"Foo" (inexistent). Goto Execution tab. Inspect twin visibility. | | Group Name, DT Directory, Common Library Project Name, Branch name no
value | Invalid value caught early. Can't save, appropriate feedback of invalid form fill out. |){ Same as Branch invalid case. | Change Group
Name, DT Directory, Common Library Project Name, Branch name to the empty string. | |

| | Runner tag valid | Job is picked up by runner with relevant tag and completes without error. | [4 Same as expected. | Goto Preview page.
Go to Account. Change Runner Tag. Go back one page. Execute Hello world twin. Verify runner name based on tag (repeat with 2nd runner) | |
Runner tag invalid | Job is never picked up. Runner times out after 10 minutes. | [V4 Same as expected. | Change Runner Tag to

"foo" (inexistent). Run Hello World twin. | | Runner Tag no value | Configuration saves. Running a twin succeeds if appropriate runner exists.
| ¢ Not picked up, times out. | Set run_untagged = false in local gitlab runner config. Mark "Run untagged jobs" as true in gitlab instance
(https://dtaas-digitaltwin.com/gitlab). Change Runner Tag to the empty string on application. Run Hello world twin. | | Branch valid | Job
runs with the correct branch and completes without error. | [/4 Same as expected. | Make new branch in GitLab instance project. Change
Branch name to "master-2". Execute Hello world twin. Verify ref matches branch in execution log. | | Branch invalid | Execution tab
gracefully displays no twins as branch doesn't exist. | Y IF twins are not cached: Throws an error displayed to user: An error occurred while
fetching assets: GitbeakerRequestError. IF twins are cached: Job fails. Snackbar says "Execution error for [twin name]". No log available in
execution history. | Change Branch name to "master-1" (inexistent). IF twins are cached: Execute Hello world twin. | | Group name valid |
The twin is runnable. | [V4 Same as expected. | Click "reset to defaults". Run twin. | | Group name invalid | Execution tab gracefully displays
no twins as group doesn't exist. | { Same as Branch invalid case. | Change group name to "Foo" (inexistent). IF twins are cached: Execute
Hello world twin. | | Common name valid | Library twins are visible. | [4 Same as expected. Private twins also show up in Common twins. |

-49/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://dtaas-digitaltwin.com/gitlab
https://dtaas-digitaltwin.com/gitlab

2.5.3 DevOps Preview

Click "reset to defaults". Goto library. Goto common twins. Inspect twin visibility. | | Common name invalid | Library twins gracefully not
visible. |)¢ Displays error: An error occurred while fetching assets: Error: Common project foo not found | Change Common Library
Project name to "Foo" (inexistent). Goto common twins. Inspect visibility. | | DT directory valid | Twins are visible. | [4 Same as expected.
| Click "reset to defaults". Goto library. Goto Execution tab. Inspect twin visibility. | | DT directory name invalid | Twins gracefully not
visible. |){ Depends on the cache. Displays error if there is none: An error occurred while fetching assets: GitbeakerRequestError |
Change Common DT directory name to "Foo" (inexistent). Goto Execution tab. Inspect twin visibility. | | Group Name, DT Directory,
Common Library Project Name, Branch name no value | Invalid value caught early. Can't save, appropriate feedback of invalid form fill
out. | Y{ Same as Branch invalid case. | Change Group Name, DT Directory, Common Library Project Name, Branch name to the empty
string. |

Summary: Changing to valid settings works. Invalid settings in the best case display an error in the HTML (no cache) and otherwise shows
stale twins.

Problems:

* Stale state maintained after settings are updated unless page is refreshed.
* Displaying technical errors to the user when the settings are invalid.

* Permitting invalid values such as empty strings when they are required

* No tags runners may not work, but possibly local problem.

* Private twins show up as common twins

CONCURRENT EXECUTION
Expected behaviour Observed behaviour Test method
Both twins run successfully simultaneously. {74 same as expected. Run the same twin twice at the same time.
All twins run successfully simultaneously. [74 Same as expected. Run different twins at the same time.

Concurrent Execution Across Different Runners

Expected behaviour Observed Test method
behaviour

Both twins run successfully (74 Same as Set up 2 ubuntu GitLab runners with different tags. Change
simultaneously. They report the correct expected. Runner Tag to first runner's tag. Execute twin. Change Runner
runner name in the Execution logs. Tag to second runner tag. Execute another twin.
History stays after editing, it is still 74 Same as Execute — Edit settings — Execute. Check - is history still
executing. expected. there? Does it look correct?

Summary:

All functionality works according to the tests. The logs are still there after changing settings and running any combination of twins and
runners work (Only Ubuntu runners tested).

IMPLEMENTING BACKENDS

The DTaas is by default set up to work with GitLab as execution and storage backend, but other combinations may fit your needs better. As
such, the code base is designed with this flexibility in mind, so you don't have to reimplement everything every time you need a new
backend. In future versions of the DTaa$S, more backends may be available out of the box, like GitHub and Azure.

() SUMMARY

Digital Twins can be queued as needed and the live settings you make during these will not interfere with data retention, while
empowering you to test multiple setups at once in one place. For greater flexibility, those with the technical know-how can frictionlessly
expand upon the available backends.

-50/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

Running Multiple Digital Twins at the Same Time

The DTaa$ platform allows for executing multiple Digital Twins in tandem with one another. This can save hours of time when dealing
with intensive Digital Twins or when you want to deploy them across different resources.

RUNNING DIGITAL TWINS

When you want to deploy a Digital Twin you can do this from the Execution tab on the Digital Twin Preview page. You can find this by

-
- g
-
clicking on the Workbench icon in the sidebar on the left hand side and locating Digital Twins Preview among the other

links. Click to open the Digital Twin Preview page in a new tab.

In the newly opened tab you will see a series of cards with a name, short description of the Digital Twins and START and HISTORY
buttons. The START button sends a job to the backend, telling it to run the simulation associated with that Digital Twin, which is defined by
its Life Cycle files. You can inspect and change these in the Edit tab.

Running Multiple Twins
Pressing the START button multiple times queues multiple simulations. You can also queue different kinds of Digital Twins.

The Digital Twin as a Service X +

(¢] O B = dtaas-digitaltwin.com

The Digital Twin as a Service

*_ This page demonstrates integration of DTaaS with GitLab CI/CD workflows. The feature is experimental and requires certain GitLab setup in order for it to work.

- Create Manage Execute

Execute existing digital twins using CI/CD pipelines of the linked gitlab repository. Availability of gitlab runners is required for execution of digital twins.

Q_ | Search by name

Custom twin Custom twin2 Hello world windows Hello world

The hello world windows digital twin

(DT) is a simple demonstrative model The hello world digital twin (D) is a
this is a custom twin. this is a custom twin readme. simple demonstrative model designed

designed to introduce the basic
to introduce the basic concepts of a DT.
concepts of a DT.

3
START HISTORY START HISTORY START HISTORY START HISTORY

Mass spring damper 2 Mass spring damper New twin
The mass spring damper digital twin The mass spring damper digital twin

(DT) 2 comprises two mass spring (DT) comprises two mass spring HW2 d o
dampers and demonstrates how a co- dampers and demonstrates how a co- escription
simulation based DT can be used within simulation based DT can be used within

START HISTORY START HISTORY START HISTORY

Copyright © The INTO-CPS Association 2025.

Thanks to Material-Ul for the Dashboard template, which was the basis for our React app.

The deployment service (e.g. GitLab) automatically load balances across available runners, so you can set it and forget it.

ica THE EXECUTION LOG

Pushing the HISTORY button provides an overview of all current and past simulation trials, distinguished by time of execution and status
(Running, Failed, Succeeded or Timed Out). To check how a simulation went, you can click on an entry (or the arrow on the right of the
entry) to expand it. Each step in the Life Cycle will then be presented.

If you want to delete an entry, click the trash icon. A verification box will reassure you that you are deleting the right one. You can also
delete all entries of a Digital Twin with the CLEAR ALL button.

Click the stop symbol in the log to stop an execution:

-51/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.5.3 DevOps Preview

Hello world Execution History

Execution History

24/12/2025,16.24.15

Status: Running

C

24/12/2025,16.24.11

Status: Running

24/12/2025,16.24.09
Status: Running

CLEAR ALL

., CHANGING RUNNERS

You can change which runners pick up the jobs in the settings. Read more about this and other settings that are available.

¢ SUMMARY

You have now learned how to navigate the DevOps Execution page: execute multiple Digital Twins at the same time and inspect and delete
their logs.

-52/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.6 Working with GitLab

2.6 Working with GitLab

The DTaa$ platform relies on GitLab for two purposes:

1. OAuth 2.0 authorization service

2. DevOps service

The admin documentation covers the OAuth 2.0 authorization configuration. This guide addresses the use of git commands and project
structure for the GitLab DevOps service within the DTaaS.

2.6.1 Preparation

The first step is to create a GitLab project with the username in the GitLab user group named dtaas.

dtaas /| New project / Create blank project

@ Create blank project

Create a blank project to store your files, plan your work, and collaborate on code, among other things.

Project name

h [userl

0 Must start with a lowercase or uppercase letter, digit, emoji, or underscore. Can also contain dots, pluses, dashes, or spaces.
0 Project URL Project slug
N https://shared.dtaas-digitaltwin.com/gitlab/ = dtaas v / userl

Want to organize several dependent projects under the same namespace? Create a group.
Visibility Level ®
O & Private

N Project access must be granted explicitly to each user. If this project is part of a group, access is granted to members of the group.

> Project Configuration

’ () Initialize repository with a README
Allows you to immediately clone this project’s repository. Skip this if you plan to push up an existing repository.

() Enable Static Application Security Testing (SAST)
Analyze your source code for known security vulnerabilities. Learn more.

=> T -

The user must have ownership permissions over the project.

-53/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.6.2 Git commands

dtaas > userl > Members

Project members Import from a project | | Invite a group

You can invite a new member to user1 or invite another group.

Members 2
['{D v ‘ Filter members ‘ Q} Account v | l=
Account Source Max role Expiration Activity

root User created: Dec 18, 2024

dtaas Owner Expiration date B Access granted: Dec 18, 2024

@root Last activity: Dec 18, 2024
A1 A
i o'k usert Direct member by - User created: Dec 19, 2024 .
Oty @userl Administrator Owner ~ Expiration date B9 Access granted: Dec 19, 2024 :

ﬁming

The DTaaS website expects a default branch named main to exist. The website client performs all git operations on this branch. The preferred
default branch name can be changed in the settings page.

2.6.2 Git commands

Standard git commands and workflows should be utilized. There are two methods for using a GitLab project as a remote git server:

1. Over SSH using a personal SSH key

2. Over HTTPS using personal access tokens (PAT)
This tutorial demonstrates the use of PAT for working with the GitLab server.

The first step is to create a PAT.

-54/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

2.6.3 Library Assets

&) C @ O 8 https://shared.dtaas-digitaltwin.com/gitlab/-/profile/personal_access_tokens @ 80% {‘3
“ o + User Settings > Access Tokens

user1 Personal Access Tokens

@user1

Set status Active personal access tokens & 0

Edit profile

Preferences Add a personal access token

Navigation redesign Token name

New navigation [demo

For example, the application using the token or the purpose of the token.

Sign out
e——rrr s Expiration date
£ Emails [2025-01-18 (% M|
& Password
Select scopes
[Notifications Scopes set the permission levels granted to the token. Learn more.
£ SSH Keys api
Grants complete read/write access to the API, including all groups and projects, the container registry, and the ¢
£ GPG Keys .
() read_api
5 Preferences Grants read access to the AP, including all groups and projects, the container registry, and the package registry
(") read_user
& Comment Templates Grants read-only access to the authenticated user's profile through the /user API endpoint, which includes usen
. X API endpoints under /users.
El Active Sessions
[create_runner
Authentication Log Grants create access to the runners.
() k8s_proxy
Grants permission to perform Kubernetes API calls using the agent for Kubernetes.
[read_repository
O Grants read-only access to repositories on private projects using Git-over-HTTP or the Repository Files API.
2) Help

write_repository
This token should be copied and used to clone the git repository.

2.6.3 Library Assets

GitLab is used to store the reusable Library assets of all users. A mandatory structure exists for storing and using Library assets including
digital twins. A properly initialized GitLab project should have the following structure.

-55/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.6.4 Next Steps

[[J dtaas > user
U userls Qv Yr Star | 0 % Forks | O
Project ID: 2 [3y Leave project
©-1Commit ¥ 1Branch < 0Tags [2KiB Project Storage
adds sample project structure
Q Pe prol . d679b664 | [
prasadtalasila authored just now
main v userl /| | + v History Find file Edit v & v
[®) README [3 cI/cD configuration | | Add LICENSE | | Add CHANGELOG ! | Add CONTRIBUTING |
Auto DevOps enabled | ® Add Kubernetes cluster | | & Add Wiki | | © Configure Integrations |
Name Last commit Last update
£ data adds sample project structure 5 minutes ago
£ digital_twins adds sample project structure 5 minutes ago
3 functions adds sample project structure 5 minutes ago
£ models adds sample project structure 5 minutes ago
B tools adds sample project structure 5 minutes ago

& .gitlab-ci.yml adds sample project structure

m+ README.md adds sample project structure

just now

5 minutes ago

Please pay special attention to .gitlab-ci.yml . It must be a valid GitLab DevOps configuration. The example repo provides a sample

structure.

For example, with PATL as the PAT for the dtaas/userl repository, the command to clone the repository is:

1 Sgit clone \
2 https://userl:PAT1@dtaas-digitaltwin.com/gitlab/dtaas/userl.git
3 Scd userl

After adding the required Library assets:

1 Sgit push origin

2.6.4 Next Steps

A GitLab runner should be integrated with the project repository. Runners may already be installed with the DTaa$S platform. These can be
verified on the runners page. Additionally, custom runners can be installed and integrated with the repository.

The Digital Twins Preview can then be used to access the DevOps features of the DTaaS$ platform.

-56/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.com/dtaas/user1

2.7 Runner

2.7 Runner

A utility service to manage safe execution of remote scripts / commands. User launches this from commandline and let the utility manage
the commands to be executed.

The runner utility runs as a service and provides REST API interface to safely execute remote commands. Multiple runners can be active
simultaneously on one computer. The commands are sent via the REST API and are executed on the computer with active runner.
Warning

This npm package works only on Linux platforms

2.7.1 [Install
NPM Registry
The package is available on npmjs.
Install the package with the following command:

1 sudo npm install -g @into-cps-association/runner

Github Registry

The package is available in Github packages registry.
Set the registry and install the package with the following commands

1 sudo npm config set @into-cps-association:registry \
2 https://npm.pkg.github.com
3 sudo npm install -g @into-cps-association/runner

The npm install command asks for username and password. The username is your Github username and the password is your Github
personal access token. In order for the npm to download the package, your personal access token needs to have read:packages scope.

2.7.2 L3 Configure

The utility requires config specified in YAML format. The template configuration file is:

port: 5000
location: 'script' #directory location of scripts
commands: #list of permitted scripts

- create

- execute

- terminate

(=N, B NS UR R

It is suggested that the configuration file be named as runneryaml and placed in the directory in which the runner microservice is run.
The location refers to the relative location of the scripts directory with respect to the location of runneryamdl file.

However, there is no limitation on either the configuration filename or the location. The path to runneryaml can either be relative or
absolute path. However, the location path is always relative path with respect to the path of runneryaml file.

e The commands must be executable. Please make sure that the commands have execute permission on Linux platforms.

2.7.3 Create Commands

The runner requires commands / scripts to be run. These need to be placed in the location specified in runneryaml file. The location must
be relative to the directory in which the runner microservice is being run.

-57/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://www.npmjs.com/package/@into-cps-association/runner
https://github.com/orgs/INTO-CPS-Association/packages
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

2.74 Use

2.7.4 ¢ Use

Display help.
1 Srunner -h
2 Usage: runner [options
3
4 Remote code execution for humans
5
6 Options:
7 -V --version package version
8 -c --config <string> runner config file specified in yaml format (default: "runner.yaml")
9 -h --help display help

The config option is not mandatory. If it is not used, runner looks for runneryaml in the directory from which it is being run. Once
launched, the utility runs at the port specified in runneryaml file.

1 runner #use runner.yaml of the present working directory
2 runner -c FILE-PATH #absolute or relative path to config file
3 runner --config FILE-PATH #absolute or relative path to config file

If launched on one computer, you can access the same at http://localhost:<port>.

Access to the service on network is available at http://<ip or hostname>:<port>/ .

Application Programming Interface (API)

Three REST API methods are active. The route paths and the responses given for these two sources are:

REST API Route HTTP Method Return Value Comment
localhost:port POST Returns the execution status of Executes the command provided. Each
command invocation appends to array of commands

executed so far.

localhost:port GET Returns the execution status of the
last command sent via POST
request.

localhost:port/ GET Returns the array of POST requests

history received so far.

-58/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.74 Use

POST REQUEST TO /

Executes a command. The command name given here must exist in location directory.

Valid HTTP Request HTTP Response - Valid Command HTTP Response - Inalid Command

POST / HTTP/1.1

Host: foo.com

Content-Type: application/json
Content-Length: 388

{

"name": "<command-name>"

}

® ~N G EWN

Connection: close

Content-Length: 134

Content-Type: application/json; charset=utf-8
Date: Tue, 09 Apr 2024 08:51:11 GMT

Etag: W/"86-jal5r8P5HJu72JcROFBTV4SAN2I"
X-Powered-By: Express

{

"status": "success"

© oo N U WN

10 1}

1 Connection: close

2 Content-Length: 28

3 Content-Type: application/json; charset=utf-8
4 Date: Tue, 09 Apr 2024 08:51:11 GMT

5 Etag: W/"86-jal5r8P5HJu72JcROFBTV4sAN2I"

6 X-Powered-By: Express

7

8

9

{

"status": "invalid command"
10 1}

-59/249 - Copyright © 2022 - 2026 The INTO-CPS Association

GET REQUESTTO/

Shows the status of the command last executed.

® ~N G EWN

© oo N U WN

11
12
13
14
15

Valid HTTP Request HTTP Response - Valid Command

GET / HTTP/1.1

Host: foo.com

Content-Type: application/json
Content-Length: 388

{

"name": "<command-name>"

}

Connection: close

Content-Length: 134

Content-Type: application/json; charset=utf-8
Date: Tue, 09 Apr 2024 08:51:11 GMT

Etag: W/"86-jal5r8P5HJu72JcROFBTV4SAN2I"
X-Powered-By: Express

{
"name": "<command-name>",
"status": "valid",
"logs": {
"stdout": "<output log of command>",
"stderr": "<error log of command>"
}
}

Connection: close

Content-Length: 70

Content-Type: application/json; charset=utf-8
Date: Tue, 09 Apr 2024 08:51:11 GMT

Etag: W/"86-jal5r8P5HJu72JcROfBTV4SAN2I"
X-Powered-By: Express

{
"name": "<command-name>",
"status": "invalid",
"logs": {
"stdout": "",
"stderr: "
}
}

GET REQUEST TO /HISTORY

2.74 Use

HTTP Response - Inalid Command

Returns the array of POST requests received so far. Both valid and invalid commands are recorded in the history.

[
{
"name": "valid command"
b
{
"name": "valid command"
B
{
"name": "invalid command"
}
]

- 60/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

© 00 N oy U s W N =

e T S Y
O N =)

2.8 Examples

2.8 Examples

2.8.1 DTaaS Examples

Several example digital twins have been created for the DTaa$S platform. These examples can be explored, and the steps provided in this
Examples section can be followed to experience features of the DTaa$ platform and understand best practices for managing digital twins
within the platform. The following slides and video provide an overview of these examples.

Please see the following demos illustrating the use the DTaaS in two projects:

Project Slides and Videos

CP-SENS project Project Introduction: slides and video
Wind turbine testing with the demo inside user workspace
Python package and demo video

Videos demonstrating digital twin for structural health monitoring applications: Data Acquisition System: Part-1,
Data Acquisition System: Part-2, Operational Model Analysis, and Model Updating

Incubator video

Copy Examples

The first step is to copy all example code into the user workspace within a user workspace. The provided shell script copies all examples
into the /workspace/exanples directory.

1 wget https://raw.githubusercontent.com/INTO-CPS-Association/DTaaS-examples/main/getExamples.sh
2 bash getExamples.sh

Example List

The digital twins provided in examples vary in complexity. It is recommended to use the examples in the following order.

. Mass Spring Damper

. Water Tank Fault Injection

. Water Tank Model Swap

. Desktop Robotti and RabbitMQ

. Water Treatment Plant and OPC-UA

. Three Water Tanks with DT Manager Framework

. Flex Cell with Two Industrial Robots

. Incubator

. Firefighters in Emergency Environments

. Mass Spring Damper with NuRV Runtime Monitor FMU

. Water Tank Fault Injection with NuRV Runtime Monitor FMU
. Incubator Co-Simulation with NuRV Runtime Monitor FMU
. Incubator with NuRV Runtime Monitor as Service

. Incubator with NuRV Runtime Monitor FMU as Service

¥ DTaa$S examples

-61/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/20240917-Examples.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20240917-Examples-Recorded-web.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/20240917-CPSENS-demo.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20240917-CPSENS-demo-Recorded-web.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20251125_DTU-wind-turbine-blade-testing.mp4
https://github.com/INTO-CPS-Association/example-shm/releases
https://odin.cps.digit.au.dk/into-cps/cp-sens/20251128_Python_package_0.6.0.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20250525_DAQ-1.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20250525_DAQ-2.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20250525_OMA.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20250525_Model-Update.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/Incubator-demo-web.mp4
https://github.com/INTO-CPS-Association/DTaaS-examples

2.8.2 Mass Spring Damper

2.8.2 Mass Spring Damper
Overview

The mass spring damper digital twin (DT) comprises two mass spring dampers and demonstrates how a co-simulation based DT can be
used within the DTaaS.

Example Diagram

o=

Example Structure

There are two simulators included in the study, each representing a mass spring damper system. The first simulator calculates the mass
displacement and speed of for a given force acting on mass . The second simulator calculates force given a displacement and speed of
mass . By coupling these simulators, the evolution of the position of the two masses is computed.

MassSpringDamper1.fmu MassSpringDamper2.fmu
(FMU}1) (FMU»)

Maestro

-62/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.2 Mass Spring Damper

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

Asset Type Names of Assets Visibility Reuse in Other Examples

Models MassSpringDamperl.fmu Private Yes
MassSpringDamper2.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

The co-sim.json and time.json are two DT configuration files used for executing the digital twin. These two files can be modified to
customize the DT for specific requirements.

Lifecycle Phases

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/mass-spring-damper/output directory
Clean Clears run logs and outputs

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital_twins/mass-spring-damper

If required, change the execute permission of lifecycle scripts you need to execute, for example:

1 chmod +x Lifecycle/create

Now, run the following scripts:

CREATE
Installs Open Java Development Kit 17 in the workspace.

1 Lifecycle/create

EXECUTE

Run the the Digital Twin. Since this is a co-simulation based digital twin, the Maestro co-simulation tool executes co-simulation using the
two FMU models.

1 Lifecycle/execute
Examine the Results

The results can be found in the /workspace/examples/data/mass-spring-damper/output directory.

Run logs can also be viewed in the /workspace/examples/digital_twins/mass-spring-damper.

TERMINATE PHASE
Terminate to clean up the debug files and co-simulation output files.

1 Lifecycle/terminate

-63/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.2 Mass Spring Damper

References
More information about co-simulation techniques and mass spring damper case study are available in:

1 Gomes, Claudio, et al. "Co-simulation: State of the art."
2 arXiv preprint arXiv:1702.00686 (2017).

The source code for the models used in this DT are available in mass spring damper github repository.

- 64/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example-mass_spring_damper

2.8.3 Water Tank Fault Injection

2.8.3 Water Tank Fault Injection

Overview

This example demonstrates a fault injection (FI) enabled digital twin (DT). A live DT is subjected to simulated faults received from the
environment. The simulated faults are specified as part of DT configuration and can be changed for new instances of DTs.

In this co-simulation based DT, a watertank case-study is used; co-simulation consists of a tank and controller. The goal of which is to keep
the level of water in the tank between Level-1 and Level-2 . The faults are injected into output of the water tank controller
(Watertankcontroller-c.fmu) from 12 to 20 time units, such that the tank output is closed for a period of time, leading to the water level
increasing in the tank beyond the desired level (Level-2).

Example Diagram

- 65/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.3 Water Tank Fault Injection

Example Structure

Watertankcontroller-c.fmu Singlewatertank-20sim.fmu
(FMU,) (FMU,)

Maestro

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

Asset Type Names of Assets Visibility Reuse in Other Examples

Models watertankcontroller-c.fmu Private Yes
singlewatertank-20sim.fmu Private Yes

Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

The multimodelFI.json and simulation-config.json are two DT configuration files used for executing the digital twin. These two files can be
modified to customize the DT for specific requirements.

o The faults are defined in wt_fault.xml.

Lifecycle Phases

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/water_tank_FI/output directory
Clean Clears run logs and outputs

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital_twins/water_tank_FI

If required, change the execute permission of lifecycle scripts you need to execute, for example:

1 chmod +x Lifecycle/create

Now, run the following scripts:

- 66/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.3 Water Tank Fault Injection

CREATE
Installs Open Java Development Kit 17 and pip dependencies. The pandas and matplotlib are the pip dependencies installated.

1 Lifecycle/create

EXECUTE
Run the co-simulation. Generates the co-simulation output.csv file at /workspace/exanples/data/water_tank_FI/output .

1 Lifecycle/execute

ANALYZE PHASE
Process the output of co-simulation to produce a plot at: /workspace/examples/data/water_tank_FI/output/plots/ .

1 Lifecycle/analyze

Examine the results
The results can be found in the /workspace/examples/data/water_tank_FI/output directory.

You can also view run logs in the /workspace/examples/digital_twins/water_tank_FI.

TERMINATE PHASE
Clean up the temporary files and delete output plot

1 Lifecycle/terminate

References
More details on this case-study can be found in the paper:

M. Frasheri, C. Thule, H. D. Macedo, K. Lausdahl, P. G. Larsen and

L. Esterle, "Fault Injecting Co-simulations for Safety,"

2021 5th International Conference on System Reliability and Safety (ICSRS),
Palermo, Italy, 2021.

W N

The fault-injection plugin is an extension to the Maestro co-orchestration engine that enables injecting inputs and outputs of FMUs in an
FMI-based co-simulation with tampered values. More details on the plugin can be found in fault injection git repository. The source code
for this example is also in the same github repository in a example directory.

-67/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fault-injection-maestro
https://github.com/INTO-CPS-Association/fault-injection-maestro/blob/development/fi_example/README.md

2.8.4 Water Tank Model Swap

2.8.4 Water Tank Model Swap
Overview

This example demonstrates multi-stage execution and dynamic reconfiguration of a digital twin (DT). Two features of DTs are
demonstrated:

* Fault injection into live DT

* Dynamic auto-reconfiguration of live DT

The co-simulation methodology is used to construct this DT.

Example Structure

Stage-1:
Watertankcontroller-c.fmu Singlewatertank-20sim.fmu
(FMU,) (FMU,)
Maestro
Stage-2:
Watertankcontroller-c.fmu Singlewatertank-20sim.fmu Leakdetector.fmu
(FMU,) (FMU,) (FMU3)
Maestro
Swap
/ Leakcontroller.fmu) Singlewatertank-20sim.fmu Leakdetector.fmu
(FMU,) (FMU,) (FMU3)
Maestro

- 68/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.4 Water Tank Model Swap

Configuration of assets

This example uses four models and one tool. The specific assets used are:

Asset Type Names of Assets Visibility Reuse in Other Examples
Models Watertankcontroller-c.fmu Private Yes
Singlewatertank-20sim.fmu Private Yes
Leak_detector.fmu Private No
Leak_controller.fmu Private No
Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

This DT has many configuration files. The DT is executed in two stages. There exist separate DT configuration files for each stage. The
following table shows the configuration files and their purpose.

Configuration file name Execution Stage Purpose

mm1. json stage-1 DT configuration

wt_fault.xml, FaultInject.mabl stage-1 faults injected into DT during stage-1

mm2.json stage-2 DT configuration

simulation-config.json Both stages Configuration for specifying DT execution time and output logs

Lifecycle Phases

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute Produces and stores output in data/water_tank_swap/output directory
Analyze Process the co-simulation output and produce plots

Clean Clears run logs, outputs and plots

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital_twins/water_tank_swap

If required, change the permission of files you need to execute, for example:
1 chnod +x Lifecycle/create
Now, run the following scripts:
CREATE
Installs Open Java Development Kit 17 and pip dependencies. The matplotlib pip package is also installated.
1 Lifecycle/create
EXECUTE

This DT has two-stage execution. In the first-stage, a co-simulation is executed. The Watertankcontroller-c.fmu and
Singlewatertank-20sim.fmu models are used to execute the DT. During this stage, faults are injected into one of the models
(Watertankcontroller-c.fmu) and the system performance is checked.

-69/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.4 Water Tank Model Swap

In the second-stage, another co-simulation is run in which three FMUs are used. The FMUs used are: watertankcontroller,
singlewatertank-20sim, and leak_detector. There is an in-built monitor in the Maestro tool. This monitor is enabled during the stage and a
swap condition is set at the beginning of the second-stage. When the swap condition is satisfied, the Maestro swaps out
Watertankcontroller-c.fmu model and swaps in Leakcontroller.fmu model. This swapping of FMU models demonstrates the dynamic
reconfiguration of a DT.

The end of execution phase generates the co-simulation output.csv file at /workspace/examples/data/water_tank_swap/output .

1 Lifecycle/execute

ANALYZE PHASE
Process the output of co-simulation to produce a plot at: /workspace/examples/data/water_tank_FI/output/plots/ .

1 Lifecycle/analyze

Examine the results
The results can be found in the workspace/examples/data/water_tank_swap/output directory.

You can also view run logs in the workspace/examples/digital_twins/water_tank_swap.

TERMINATE PHASE
Clean up the temporary files and delete output plot

1 Lifecycle/terminate

References
The complete source of this example is available on model swap github repository.
The runtime model (FMU) swap mechanism demonstrated by the experiment is detailed in the paper:

1 Ejersbo, Henrik, et al. "fmiSwap: Run-time Swapping of Models for
2 Co-simulation and Digital Twins." arXiv preprint arXiv:2304.07328 (2023).

The runtime reconfiguration of co-simulation by modifying the Functional Mockup Units (FMUs) used is further detailed in the paper:

Ejersbo, Henrik, et al. "Dynamic Runtime Integration of

New Models in Digital Twins." 2023 IEEE/ACM 18th Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). TEEE, 2023.

W N e

-70/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/hejersbo/dtaas-wt-swap

2.8.5 Desktop Robotti with RabbitMQ

2.8.5 Desktop Robotti with RabbitMQ
Overview

This example demonstrates bidirectional communication between a mock physical twin and a digital twin of a mobile robot (Desktop
Robotti). The communication is enabled by RabbitMQ Broker.

. <—— BRabbit/VIO

digital twin

Example Structure

The mock physical twin of mobile robot is created using two python scripts

1. data/drobotti_rmgfmu/rmqg-publisher.py

2. data/drobotti_rmgfmu/consume.py

The mock physical twin sends its physical location in (x,y) coordinates and expects a cartesian distance calculated from digital twin.

-71/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.5 Desktop Robotti with RabbitMQ

drobotti_playback
mock physical twin _data.csv

/

e 3

rmg-publisher.py }—_ 1. coordinates

‘ [WRabbit
/

A

consume.py

&
O ~
2. coordinates 3. distance

a ' N

distance-from-zero.fmu rmg-vhost.fmu
(Distance FMU - FMU,) (RabbitMQ FMU - FMU,)

4. distance

Maestro

AN /

digital twin

The rmg-publisher.py reads the recorded (x,y) physical coordinates of mobile robot. The recorded values are stored in a data file. These (x,y)
values are published to RabbitMQ Broker. The published (x,y) values are consumed by the digital twin.

The consume.py subscribes to RabbitMQ Broker and waits for the calculated distance value from the digital twin.

The digital twin consists of a FMI-based co-simulation, where Maestro is used as co-orchestration engine. In this case, the co-simulation is
created by using two FMUs - RMQ FMU (rabbitmg-vhost.fmu) and distance FMU (distance-from-zero.fmu). The RMQ FMU receives the (x,y)
coordinates from rmqg-publisherpy and sends calculated distance value to consume.py. The RMQ FMU uses RabbitMQ broker for
communication with the mock mobile robot, i.e., rmg-publisher.py and consume.py. The distance FMU is responsible for calculating the
distance between (0,0) and (x,y). The RMQ FMU and distance FMU exchange values during co-simulation.

-72/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.5 Desktop Robotti with RabbitMQ

Digital Twin Configuration

This example uses two models, one tool, one data, and two scripts to create mock physical twin. The specific assets used are:

Asset Type Names of Assets Visibility Reuse in Other Examples
Models distance-from-zero.fmu Private No
rmq-vhost.fmu Private Yes
Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes
Data drobotti_playback_data.csv private No
Mock PT rmg-publisher.py Private No
consume.py Private No

This DT has many configuration files. The coe.json and multimodel.json are two DT configuration files used for executing the digital twin.
These two files can be modified to customize the DT for specific requirements.

The RabbitMQ access credentials need to be provided in multimodel.json. The rabbitMQ-credentials.json provides RabbitMQ access credentials
for mock PT python scripts. The appropriate credentials should be added in both these files.

Lifecycle Phases

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool and pip packages for python scripts
Execute Runs both DT and mock PT

Clean Clears run logs and outputs

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital_twins/drobotti_rmqfmu

If required, change the execute permission of lifecycle scripts you need to execute, for example:
1 chmod +x Lifecycle/create
Now, run the following scripts:
CREATE

Installs Open Java Development Kit 17 in the workspace. Also install the required python pip packages for rmg-publisherpy and
consume.py scripts.

1 Lifecycle/create

EXECUTE

Run the python scripts to start mock physical twin. Also run the the Digital Twin. Since this is a co-simulation based digital twin, the
Maestro co-simulation tool executes co-simulation using the two FMU models.

1 Lifecycle/execute

Examine the results

The results can be found in the /workspace/examples/digital_twins/drobotti_rmqfmu directory.

-73/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.5 Desktop Robotti with RabbitMQ

Executing the DT will generate and launch a co-simulation (RMQFMU and distance FMU), and two python scripts. One to publish data that
is read from a file. And one to consume what is sent by the distance FMU.

In this examples the DT will run for 10 seconds, with a stepsize of 100ms. Thereafter it is possible to examine the logs produce in
/workspace/examples/digital_twins/drobotti_rmqfmu/target . The outputs for each FMU, xpos and ypos for the RMQFMU, and the distance for the
distance FMU are recorded in the outputs.csv file. Other logs can be examined for each FMU and the publisher scripts. Note that, the
RMQFMU only sends data, if the current input is different to the previous one.

TERMINATE PHASE
Terminate to clean up the debug files and co-simulation output files.

1 Lifecycle/terminate

References
The RabbitMQ FMU github repository contains complete documentation and source code of the rmg-vhost.fmu.
More information about the case study is available in:

1 Frasheri, Mirgita, et al. "Addressing time discrepancy between digital
2 and physical twins." Robotics and Autonomous Systems 161 (2023): 104347

- 74/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fmu-rabbitmq

2.8.6 Waste Water Plant with OPC-UA

2.8.6 Waste Water Plant with OPC-UA
Introduction

Waste water treatment (WWT) plants must comply with substance and species concentration limits established by regulation in order to
ensure the good quality of the water. This is usually done taking periodic samples that are analyzed in the laboratory. This means that
plant operators do not have continuous information for making decisions and, therefore, operation setpoints are set to higher values than
needed to guarantee water quality. Some of the processes involved in WWT plants consume a lot of power, thus adjusting setpoints could
significantly reduce energy consumption.

Physical Twin Overview

This example demonstrates the communication between a physical ultraviolet (UV) disinfection process (the tertiary treatment of a WWT
plant) and its digital twin, which is based on Computational Fluid Dynamics (CFD) and compartment models. The aim of this digital twin is
to develop "virtual sensors" that provide continuous information that facilitates the decision making process for the plant operator.

(Cl -

5 Data. Algonthm / Results
ClnAL Processing execution /
CinA2
CinA3 COutAl
CinC COutA2
“0OPC UA |COutAs
COutC
) - FMU
Operator B PLC
Vir entry data EDAR
P[1]
P[2]
P[3]
= CFD Model Compartment :
UV Chanel Model —v“v-v
PLC |
wows [@ nobuics A

PLC
e . HEHID o

\\ 2 Medue nestzonaal de
P

Benpacas W

Optimal
Settings

The physical twin of the waste water plant is composed of an ultraviolet channel controlled by a PLC that controls the power of the UV
lamps needed to kill all the pathogens of the flow. The channel has 3 groups of UV lamps, therefore the real channel (and is mathematical
model) is subdivided into 7 zones: 4 correspond to zones without UV lamps (2 for the entrance and exit of the channel + 2 zones between
UV lamps) and the 3 reamaining for the UV lamps.

The dose to be applied (related with the power) changes according to the residence time (computed from the measure of the volume flow)
and the UV intensity (measured by the intensity sensor).

The information of the volumetric flow and power (in the three parts of the channel) is transmitted to the PLC of the plant. Furthermore,
the PLC is working as OPC UA Server to send and receive data to and from an OPC UA Client. Additionally, some sizing parameters and
initial values are read from a spreadsheet filled in by the plant operator. In this case, the spreadsheet is an Open Office file (.ods) due to the
software installed in the SCADA PC. Some of the variables like initial concentration of disinfectant and pathogens are included, among

-75/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.6 Waste Water Plant with OPC-UA

others. Some values defined by the plant operator correspond to input signals that are not currently being measured, but are expected to
be measured in the future.

Digital Twin Overview

\d

\

A

The digital twin is a reduced model (developed in C) that solves physical conservation laws (mass, energy and momentum), but simplifies
details (geometry, mainly) to ensure real-time calculations and accurate results. The results are compared to the ones obtained by the CFD.
C solver developed is used by the OpenModelica model. OpenModelica converts it into the FMI standard, to be integrated in the OPC UA
Client (client-opcua.py).

-76/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.6 Waste Water Plant with OPC-UA

[configuration_freeopcua.ods]
OPC UA Server configuration 1. Start OPC-UA server

- Virtual: opcua-mock-server.py
-Real: PLC

Configure OPC-UA client

* OPC UA nodeids assigned to inputs
and outputs of Test_DTCONEDAR.FMU

) ® * FMU values for:
Ve \ - parameters
(Waste water plant) - initial values
digital twin

2. Publish sensor 3. Read node "
values into nodes values

A\ 4
A

client-opcua. py
(OPC UA Client)

N
4. Run FMU (FMPy Do Step)

Test_DTCONEDAR fmu tm.l

— <— «—
6. Results visualization 5. Publish 0
,,,,,,, in SCADA simulation
\ — - | ("virtual sensor”) results
_ » / create-fmu.mos
mock physical twin (Open Modelica
Compiler)
Test_DTCONEDAR.mo
Digital Twin Configuration
Asset Type Name of Asset Visibility Reuse in Other
Examples
Model Test_ DTCONEDAR.mo private No
Data configuration_freopcua.ods private No
model_description.csv (generated by client- private No
asyncua.py)
Mock OPC UA Server: opcua-mock-server.py private No
Tool OPC UA Client: client-opcua.py private No
FMU builder: create-fmu.mos private No

In this example, a dummy model representation of the plant is used, instead of the real model. The simplified model (with not the real
equations) is developed in Open Modelica (Test. DTCONEDAR.mo). The FMU is generated from the Open Modelica interface to obtain the
needed binaries to run the FMU. It is possible to run an FMU previously generated, however, to ensure that we are using the right binaries
it is recommended to install Open Modelica Compiler and run script.mos to build the FMU from the Modelica file Test_DTCONEDAR.mo .

The FMU model description file (modelDescription.xml file inside Test_DTCONEDAR.fmu) has the information of the value references
configuration_freeopcua.ods has the information of the OPC-UA node IDs And both have in common the variable name

-77/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.6 Waste Water Plant with OPC-UA

The client python script (client-opcua.py) does the following actions:

* Reads the variable names and the variable value references from the model description file of the Test DTCONEDAR.FMU.
* Reads configuration_freeopcua.ods to obtain opcua node IDs and assigns those node IDs to the variables read from the FMU

* Read configuration_freeopcua.ods to fix initial values, parameters and some inputs (those inputs that are not being measured, a
reasonable value is assumed).

* Read values from PLC using a client OPC.
* Execute the algorithm with the FMPy library using the .fmu created from the compartment model (based on CFD)
* Obtain results.

* Send by OPC UA protocol the result values to the PLC, to visualize them in the SCADA and with the aim to improve the decision-making
process of the plant operator.

INPUT DATA VARIABLES

The configuration_freeopcua.ods date file is used for customizing the initial input data values used by the server.

configuration.ods - OpenOffice Calc = O X

Archivo Editar Ver Insertar Formato Herramientas Datos Ventana Ayuda X
@'[B'B%Q %&BA{;Q& o B d@' '@:‘:l @U “@u:gBuscartexto
@ | Calibri v/ |11 v NC S Jh % X% % ez O-2-A -~

G1 vk E = |
A [B | C [D [F
name causality value reference Descripcion Unidades

| parameter 3 0 1
M calculatedParameter 10 1 [l
N

calculatedParameter 8 2 0

J

m
..‘
=)
!

.

Wi donwvikslwin
Ry & 9

10 In orange the values that can be changed

1« < » » '\ parametros {inputs {send_to_plc / l — |
Hnia1/2 | DaneShile narametrac e || Ciima-N Q@ e————— () | 10N %

-78/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.6 Waste Water Plant with OPC-UA

) configuration.ods - OpenOffice Calc —] X
Archivo Editar Ver Insertar Formato Herramientas Datos Ventana Ayuda X
P2 H® 2 BER YN K D @M by WPEEQ i suscrteo
P @ | Calibri REY NCS === Jb % i e O-2-4A-
F29 KE = | =

A [B | G [D E —
1 causality value reference i
2 input 0 1S :
3 input 0 63 ns=3;i=1001 .3
4 input 0 62 ns=3;i=1001 The node IDs should match the IDs 7N
5 input 750 173 of the OPC UA Simulation Server .
6 input 30 5 7
7 input 100000 75 -
8 |rho_a2_in input 8000 76 @
9 |rho_a3_in input 1000 77
10 |rho_c in input 0 78
11_|vel prof[1,1] |input 1 93
12_|vel prof[1,2] input 1 94 y
13 |vel prof{1,3] input 1 95 :
14 |vel prof{1,4] input 1 96 5
15 |vel prof[1,5] input 1 97
16 _|vel prof[1,6] input 1 98
17 |vel prof[1,7] input 1 99
18 |vel prof[1,8] input 1 100
19 |vel prof(2,1] input 1 101
20 |vel prof{2,2] input 1 102
21 |vel prof{2,3] input 1 103
22 |vel prof[2,4] input 1 104
23 |vel prof{2,5] input 1 105
24 |vel prof{2,6] input 1 106
25 |vel prof{2,7] input 1 107
26 |vel prof{2,8] input 1 108
27 |vel prof{3,1] input [1 109

I parametros inputs /send_to_plc / U — I
Hnia 2 /2 DanaShile innite <mn |* Quma-N = ToN @ | 1nno
DT CONFIG

The config.json specifies the configuration parameters for the OPC UA client.

{} configjson M X

{

"opc.tcp://0.0.0.0:4840",

"configuration freeopcua.ods",
"Test DTCONEDAR linux.fmu",

-79/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

Optional parameters can be modified:

* stop_time
* step_size

* record = True, if we want to save the results of the simulation

2.8.6 Waste Water Plant with OPC-UA

 record_interval. Sometimes the simulation step_size is small and a the size of the results file can be too big. For instance, if the

simulation step_size is 0.01 seconds, we can increase the record_interval so as to reduce the result file size.

* record_variables: we can specify the list of variables that we want to record.

* enable_send = True, if we want to send results to the OPC UA Server.

Lifecycle Phases

The lifecycles that are covered include:

Lifecycle Phase Completed Tasks

Install Installs Open Modelica, Python 3.10 and the required pip dependencies
Create Create FMU from Open Modelica file

Execute Run OPC UA mock server and normal OPC-UA client

Clean Delete the temporary files

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital twins/opc-ua-waterplant

If required, change the execute permission of lifecycle scripts.
1 chmod +x Lifecycle/*

Now, run the following scripts:

INSTALL
Installs Open Modelica, Python 3.10 and the required pip dependencies
1 Lifecycle/install
CREATE
Create Test_DTCONEDAR.fmu co-simulation model from ‘Test DTCONEDAR.mo open modelica file.
1 Lifecycle/create
EXECUTE
Start the mock OPC UA server in the background. Run the OPC UA client.

1 Lifecycle/execute

CLEAN

Remove the temporary files created by Open Modelica and output files generated by OPC UA client.

1 Lifecycle/clean

- 80/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

2.8.6 Waste Water Plant with OPC-UA

References
More explanation about this example is available at:

Royo, L., Labarias, A., Arnau, R., Gémez, A., Ezquerra, A., Cilla, I., &
Diez-Antofiazas, L. (2023). Improving energy efficiency in the tertiary
treatment of Alguazas WWTP (Spain) by means of digital twin development
based on Physics modelling . Cambridge Open Engage.
[doi:10.33774/coe-2023-1vjcw] (https://doi.org/10.33774/coe-2023-1vjcw)

GA W N e

Acknowledgements

The work on this example was done in a project subsidised thanks to the support grants for Agrupacién Empresarial Innovadora (AEI) of
the Ministry of Industry, Trade and Tourism (MINCOTUR) with the aim of improving the competitiveness of small and medium-sized
enterprises within the Recovery, Transformation and Resilience Plan (PRTR) financed by the Next Generation EU (NGEU) funds, with Grant
Number: AEI-010500-2022b-196.

-81/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.7 Three-Tank System Digital Twin

2.8.7 Three-Tank System Digital Twin
Overview

The three-tank system is a simple case study that represents a system composed of three individual components coupled in a cascade as
follows: The first tank is connected to the input of the second tank, and the output of the second tank is connected to the input of the third
tank.

Water Input Tank 1 Tank 2 Tank 3
=
————— ——————————
ol 12 o2 13 03

This example contains only the simulated components for demonstration purposes; therefore, there is no configuration for the connection
with the physical system.

The three-tank system case study is managed using the DTManager , which is packed as a jar library in the tools, and run from a java main
file. The DTManager uses Maestro as a slave for co-simulation, so it generates the output of the co-simulation.

The main file can be changed according to the application scope, i.e., the /workspace/examples/tools/three-tank/TankMain.java can be manipulated
to get a different result.

The /workspace/examples/models/three-tank/ folder contains the Linear.fmu file, which is a non-realistic model for a tank with input and output
and the TankSystem.aasx file for the schema representation with Asset Administration Shell. The three instances use the same .fnu file and
the same schema due to being of the same object class. The DTManager is in charge of reading the values from the co-simulation output.

- 82/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.7 Three-Tank System Digital Twin

Example Structure

DT Platform Layer
DTManager > Schema
schema [1..7] (AASX)
availableTwinSystems [*] availableTwins [*]
=
©
£ A4
=
5
Ta v s DT Tank
Syst X = DT Tank 1 DT Tank 2 3
config | system config [1] 3-Tank DT 3 > >
(Maestro) System T
endpoint [1] twin config [1]
| Endpoint <

-Tank
3-Tank System 3-Tank Simulation

Tank 1 Tank 2 Tank 3 FMU Tank 1 FMU Tank 2 FMU Tank 3

ol i2 02 i3 o1 i2 02 i3

Digital Twin Configuration

This example uses two models, two tools, one data, and one script. The specific assets used are:

Asset Type Names of Assets Visibility Reuse in Other
Examples

Model Linear.fmu Private No
TankSystem.aasx Private No

Tool DTManager-0.0.1-Maestro.jar (wraps Maestro) Common Yes
maestro-2.3.0-jar-with-dependencies.jar (used by Common Yes
DTManager)
TankMain.java (main script) Private No

Data outputs.csv Private No

This DT has multiple configuration files. The coe.json and multimodel.json are used by Maestro tool. The tank1.conf, tank2.conf and
tank3.conf are the config files for three different instances of one model (Linear.fmu).

- 83/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.7 Three-Tank System Digital Twin

Lifecycle Phases

The lifecycles that are covered include:

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool

Execute The DT Manager executes the three-tank digital twin and produces output in data/three-tank/output directory
Terminate Terminating the background processes and cleaning up the output

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital twins/three-tank

If required, change the execute permission of lifecycle scripts you need to execute, for example:
1 chmod +x Llifecycle/create
Now, run the following scripts:
CREATE
Installs Open Java Development Kit 11 and pip dependencies. Also creates DTManager tool (DTManager-0.0.1-Maestro.jar) from source code.

1 Lifecycle/create

EXECUTE

Execute the three-tank digital twin using DTManager. DTManager in-turn runs the co-simulation using Maestro. Generates the co-
simulation output.csv file at /workspace/examples/data/three-tank/output .

1 Lifecycle/execute

TERMINATE
Stops the Maestro running in the background. Also stops any other jvm process started during execute phase.

1 Lifecycle/terminate

CLEAN
Removes the output generated during execute phase.

1 Lifecycle/terminate

Examining the results

Executing this Digital Twin will generate a co-simulation output, but the results can also be monitored from updating
the /workspace/examples/tools/three-tank/TankMain. java with a specific set of getAttributevalue commands, such as shown in the code.

That main file enables the online execution of the Digital Twin and its internal components.
The output of the co-simulation is generated to the /workspace/examples/data/three-tank/output folder.

In the default example, the co-simulation is run for 10 seconds in steps of 0.5 seconds. This can be modified for a longer period and
different step size. The output stored in outputs.csv contains the level, in/out flow, and leak values.

No data from the physical twin are generated/used.

- 84/249 - Copyright © 2022 - 2026 The INTO-CPS Association

References

More information about the DT Manager is available at:

1
2
3
4
5

D. Lehner, S. Gil, P. H. Mikkelsen, P. G. Larsen and M. Wimmer

"An Architectural Extension for Digital Twin Platforms to Leverage
Behavioral Models," 2023 IEEE 19th International Conference on
Automation Science and Engineering (CASE), Auckland, New Zealand,
2023, pp. 1-8, doi: 10.1109/CASE56687.2023.10260417.

- 85/249 -

2.8.7 Three-Tank System Digital Twin

Copyright © 2022 - 2026 The INTO-CPS Association

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

2.8.8 Flex Cell Digital Twin with Two Industrial Robots
Overview

The flex-cell Digital Twin is a case study with two industrial robotic arms, a UR5e and a Kuka LBR iiwa 7, working in a cooperative setting
on a manufacturing cell.

Vi e
!f? &\ md

A ==

Tt

FanoNING [
=

7 -

W

‘v

P

The case study focuses on the robot positioning in the discrete cartesian space of the flex-cell working space. Therefore, it is possible to
send (X,Y,Z) commands to both robots, which refer to the target hole and height to which they should move.

The flex-cell case study is managed using the TwinManager (formerly DT Manager), which is packed as a jar library in the tools, and run from a
java main file.

The TwinManager uses Maestro as a slave for co-simulation, so it generates the output of the co-simulation and can interact with the real
robots at the same time (with the proper configuration and setup). The mainfile can be changed according to the application scope, i.e., the
/workspace/examples/tools/flex-cell/FlexCellDTaaS. java can be manipulated to get a different result.

The /workspace/examples/models/flex-cell/ folder contains the .fmu files for the kinematic models of the robotic arms, the .urdf files for
visualization (including the grippers), and the .aasx files for the schema representation with Asset Administration Shell.

The case study also uses RabbitMQFMU to inject values into the co-simulation, therefore, there is the rabbitmqfmu in the models folder as
well. Right now, RabbitMQFMU is only used for injecting values into the co-simulation, but not the other way around. The TwinManager is in
charge of reading the values from the co-simulation output and the current state of the physical twins.

- 86/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

Example Structure

The example structure represents the components of the flex-cell DT implementation using the TwinManager architecture.

The TwinManager orchestrates the flex-cell DT via the Flex-cell DT System, which is composed of 2 smaller Digital Twins, namely, the DT
UR5e and the DT Kuka lbr iiwa 7. The TwinManager also provides the interface for the Physical Twins, namely, PT UR5e and PT Kuka lbr
iiwa 7. Each Physical Twin and Digital Twin System has a particular endpoint (with a different specialization), which is initialized from
configuration files and data model (twin schema).

The current endpoints used in this implementation are:

Digital or Physical Twin Endpoint

Flex-cell DT System MaestroEndpoint

DT UR5e FMIEndpoint

DT Kuka lbr iiwa 7 FMIEndpoint

PT UR5e MQTTEndpoint and RabbitMQEndpoint
PT Kuka lbr iiwa 7 MQTTEndpoint and RabbitMQEndpoint

The Flex-cell DT System uses another configuration to be integrated with the Maestro co-simulation engine.

In the lower part, the Flex-cell System represents the composed physical twin, including the two robotic arms and controller and the Flex-
cell Simulation is the mock-up representation for the real system, which is implemented by FMU blocks and their connections.

FlexCellMain.java

DT Platform Layer
DTM

hd d Schema

schema [1..%]
plots.py availableTwinSystems [*] availableTwins [*]

C =
1)
outputs.csv E
1 =
Q
= DT URSe | | PT URSe
v S 5| Controller
" fig 11 g DT Kuka| |PT Kuka
Maestro system config [1] Flex-cell DT | & Ibriiwa 7| |lbr iiwa 7
(Maestro) y T
- . N Kuka Ibr
\ endpoint [1] twin config [1] iwa 7
> Endpoint <t

Mock Physical » ;
M : FMIEndpoint : ‘ Digital Twin

MaestroEndpoint
MQTTEndpoint

RabbitMQEndpoint

- 87/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

> Endpoint <t

Mock Physical Twin Digital Twin

Flex-cell System Flex-cell Simulation

ur5e_mqtt_publisher.py

move

commands
v URSe FMU

v J7—>| urbe_actual.csv move

A C

urinterface

kukalbrinterface

Controller

RabbitMQ FMU ¢7

Kuka Ibr iiwa 7

Kuka Ibr iiwa 7 kukalbriiwa7_actual.csv FMU

repare. H connections.conf]
[robots,f/exce//]—>{ publisher_flexcell_physical.py] [RIERRIE:DY,

- 88/249 - Copyright © 2022 - 2026 The INTO-CPS Association

Digital Twin Configuration

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

This example uses seven models, five tools, six data files, two functions, and one script. The specific assets used are:

Asset Type

Model

Tool

Data

Function

Names of Assets
kukalbriiwa_model.fmu
kuka_irw_gripper_rg6.urdf
kuka.aasx

ur5e_model.fmu
ur5e_gripper_2fg7.urdf
urse.aasx

rmg-vhost.fmu
maestro-2.3.0-jar-with-dependencies.jar
TwinManagerFramework-0.0.2.jar
urinterface (installed with pip)
kukalbrinterface

robots_flexcell
FlexCellDTaaS$.java (main script)
publisher-flexcell-physical.py
ur5e_mgtt_publisher.py
connections.conf

outputs.csv
kukalbriiwa7_actual.csv
ur5e_actual.csv

plots.py

prepare.py

Visibility
Private
Private
Private
Private
Private
Private
Private
Common
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private

Private

- 89/249 -

Reuse in Other Examples

No

No

No

No

No

No

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

No

Copyright © 2022 - 2026 The INTO-CPS Association

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

Lifecycle Phases
The lifecycles that are covered include:

1. Installation of dependencies in the create phase.

2. Preparing the credentials for connections in the prepare phase.

3. Execution of the experiment in the execution phase.

4. Saving experiments in the save phase.

5. Plotting the results of the co-simulation and the real data coming from the robots in the analyze phase.

6. Terminating the background processes and cleaning up the outputs in the termination phase.

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool, Compiles source code of TwinManager to create a usable jar
package (used as tool)

Prepare Takes the RabbitMQ and MQTT credentials in connections.conf file and configures different assets of DT.
Execute The TwinManager executes the flex-cell DT and produces output in data/flex-cell/output directory

Save Save the experimental results

Analyze Uses plotting functions to generate plots of co-simulation results

Terminate Terminating the background processes

Clean Cleans up the output data

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital_twins/flex-cell

If required, change the execute permission of lifecycle scripts you need to execute, for example:

1 chmod +x Lifecycle/create

This example requires Java 11. The create script installs Java 11; however if you have already installed other Java versions, your default
java might be pointing to another version. You can check and modify the default version using the following commands.

1 java -version
2 update-alternatives --config java

Now, run the following scripts:

CREATE

Installs Open Java Development Kit 11 and a python virtual environment with pip dependencies. Also builds the TwinManager tool
(TwinManagerFramework-0.0.2.jar) from source code.

1 Lifecycle/create

PREPARE

This step configures different assets of the DT with connection credentials. The functions/flex-cell/prepare.py script is used for this purpose.
The only step needed to set up the connection is to update the file /workspace/examples/data/flex-cell/input/connections.conf with the connection
parameters for MQTT and RabbitMQ and then execute the prepare script.

1 Lifecycle/prepare

-90/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

The following files are updated with the configuration information:

1. /workspace/examples/digital_twins/flex-cell/kuka_actual.conf
2. /workspace/examples/digital_twins/flex-cell/ur5e_actual.conf
3. /workspace/examples/data/flex-cell/input/publisher-flexcell-physical.py

4. modelDescription.xml for the RabbitMQFMU require special credentials to connect to the RabbitMQ and the MQTT brokers.

EXECUTE

Execute the flex-cell digital twin using TwinManager. TwinManager in-turn runs the co-simulation using Maestro. Generates the co-
simulation output.csv file at /workspace/examples/data/flex-cell/output . The execution needs to be stopped with control + ¢ since the
TwinManager runs the application in a non-stopping loop.

1 Lifecycle/execute

SAVE

Each execution of the DT is treated as a single run. The results of one execution are saved as time-stamped co-simulation output file in The
TwinManager executes the flex-cell digital twin and produces output in data/flex-cell/output/saved_experiments directory.

1 Lifecycle/save

The execute and save scripts can be executed in that order any number of times. A new file data/flex-cell/output/saved_experiments directory
with each iteration.

ANALYZE

There are dedicated plotting functions in functions/flex-cell/plots.py . This script plots the co-simulation results against the recorded values
from the two robots.

1 Lifecycle/analyze

TERMINATE
Stops the Maestro running in the background. Also stops any other jvm process started during execute phase.

1 Lifecycle/terminate

CLEAN
Removes the output generated during execute phase.

1 Lifecycle/clean

Examining the Results

Executing this Digital Twin generates a co-simulation output. The results can also be monitored by updating the /workspace/examples/tools/
flex-cell/FlexCellDTaaS. java with a specific set of getAttributeValue commands, as shown in the code. That main file enables the online
execution and comparison of Digital Twin and Physical Twin at the same time and at the same abstraction level.

The output is generated to the /workspace/examples/data/flex-cell/output folder. In case a specific experiments is to be saved, the save lifecycle
script stores the co-simulation results into the /workspace/examples/data/flex-cell/output/saved_experiments folder.

In the default example, the co-simulation is run for 11 seconds in steps of 0.2 seconds. This can be modified for a longer period and
different step size. The output stored in outputs.csv contains the joint position of both robotic arms and the current discrete (X,Y,Z) position
of the TCP of the robot. Additional variables can be added, such as the discrete (X,Y,Z) position of the other joints.

When connected to the real robots, the tools urinterface and kukalbrinterface log their data at a higher sampling rate.

-91/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.8 Flex Cell Digital Twin with Two Industrial Robots

References

The RabbitMQ FMU github repository contains complete documentation and source code of the rmq-vhost.fmu.
More information about the TwinManager (formerly DT Manager) and the case study is available in:

1. D. Lehner, S. Gil, P. H. Mikkelsen, P. G. Larsen and M. Wimmer, "An Architectural Extension for Digital Twin Platforms to Leverage Behavioral
Models," 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 2023, pp. 1-8, doi:
10.1109/CASE56687.2023.10260417.

2. S. Gil, P. H. Mikkelsen, D. Tola, C. Schou and P. G. Larsen, "A Modeling Approach for Composed Digital Twins in Cooperative Systems," 2023

IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Sinaia, Romania, 2023, pp. 1-8, doi: 10.1109/
ETFA54631.2023.10275601.

3.S.Gil, C. Schou, P. H. Mikkelsen, and P. G. Larsen, “Integrating Skills into Digital Twins in Cooperative Systems,” in 2024 IEEE/SICE
International Symposium on System Integration (SII), 2024, pp. 1124-1131, doi: 10.1109/S1158957.2024.10417610.

-92/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fmu-rabbitmq

2.8.9 Incubator Digital Twin

2.8.9 Incubator Digital Twin
Overview

This is a case study of an Incubator intended to demonstrate the steps and processes involved in developing a digital twin system. This
incubator is an insulated container with the ability to maintain a temperature and provide heating, but not cooling. A picture of the
incubator is provided below.

1T e el - o

A TN TR W v = e

The overall purpose of the system is to reach a certain temperature within a box and keep the temperature regardless of content. An
overview of the system can be seen below:

-93/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.9 Incubator Digital Twin

Insula...

f Heater Temperature... \

Fan Temperature...

) Digital...
Viewer does not support full SVG 1.1

The system consists of:

* 1x styrofoam box in order to have an insulated container

* 1x heat source to heat up the content within the Styrofoam box.

¢ 1x fan to distribute the heating within the box

* 2X temperature sensor to monitor the temperature within the box

* 1x temperature Sensor to monitor the temperature outside the box

* 1x controller to actuate the heat source and the fan and read sensory information from the temperature sensors, and communicate with

the digital twin.

The original repository for the example can be found: Original repository. This trimmed version of the codebase does not have the
following:

* docker support
* tests

* datasets

The original repository contains the complete documentation of the example, including the full system architecture, instructions for
running with a physical twin, and instructions for running a 3D visualization of the incubator.

-94/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example_digital-twin_incubator/

2.8.9 Incubator Digital Twin

Digital Twin Structure

«TimeSeriesDB»... E

(Mock) PhysicalTwin DigitalTwin
S—

Plant... —@—Dontrol\er... almanFilter... E BelfAdaptationManager... E nfluxDataRecorder... E

low_level_driver_server W
p
Legend:

IComponent... E intenace“,—@— interface re.. <<MessageExchange>>..{|

A

This diagrams shows the main components and the interfaces they use to communicate. All components communicate via the RabbitMQ
message exchange, and the data is stored in a time series database. The RabbitMQ and InfluxDB are platform services hosted by the DTaaS.

The Incubator digital twin is a pre-packaged digital twin. It can be used as is or integrated with other digital twins.

The mock physical twin is executed from incubator/mock_plant/real_time_model_solver.py script.

Digital Twin Configuration

This example uses a plethora of Python scripts to run the digital twin. By default, it is configured to run with a mock physical twin.
Furthermore, it depends on RabbitMQ and InfluxDB instances.

There is one configuration file: simulation.conf . The RabbitMQ and InfluxDB configuration parameters must be updated.

Lifecycle Phases

The lifecycles that are covered include:

Lifecycle Phase Completed Tasks

Create Potentially updates the system and installs Python dependencies

Execute Executes the Incubator digital twin and produces output in the terminal and in incubator/log.log.
Clean Removes the log file.

Run the example
To run the example, change your present directory.
1 cd /workspace/examples/digital_twins/incubator
If required, change the execute permission of lifecycle scripts you need to execute, for example:

1 chmod +x Lifecycle/create

Now, run the following scripts:

CREATE

Potentially updates the system and installs Python dependencies.

1 Lifecycle/create

-95/249 - Copyright © 2022 - 2026 The INTO-CPS Association

EXECUTE

2.8.9 Incubator Digital Twin

Executes the Incubator digital twin with a mock physical twin. Pushes the results in the terminal, incubator/log.log, and in InfluxDB.

1 Lifecycle/execute

CLEAN

Removes the output log file.

1 Lifecycle/clean

Examining the results

After starting all services successfully, the controller service will start producing output that looks like the following:

19/11 16:17:59 3.00
19/11 16:18:02 3.00
19/11 16:18:05 3.00
19/11 16:18:08 3.00
19/11 16:18:11 3.00

[T, I R R,

time execution_interval elapsed heater_on fan_on room

0.01 True False 10.70
0.03 True True 10.70
0.01 True True 10.70
0.01 True True 10.69
0.01 True True 10.69

box_air_temperature state

19.68
19.57
19.57
19.47
19.41

Heating
Heating
Heating
Heating
Heating

An InfluxDB dashboard can be setup based on incubator/digital_twin/data_access/influxdbserver/dashboards/incubator_data.json . If the dashboard
on the InfluxDB is setup properly, the following visualization can be seen:

Incubator Data

22 ADD CELL = ADD NOTE + Show Variables Enable Annotations n []

ENABLE AUTO REFRESH m

Temperature

Temperature (Celsius)

2024-03-15 12:15:00

Actuators

on/off
°
@

2024-03-15 12:15:00

References

=

2024-03-1512:30:00

2024-03-15 12:30:00

2024-03-15 12:45:00

2024-03-15 12:45:00

2024-03-15 13:00:00

U

2024-03-15 13:00:00

DesiredTemperature
3500°C
Loweround
500°C
HeatingGap
30.00s

HeatingTime

20.00s

Waiting

Timer

20.84s

[£] Forked from: Incubator repository with commit ID: 989ccf5909a684ad26a9c3ec16be2390667643aa

To understand what a digital twin is, we recommend you read/watch one or more of the following resources:

1. Feng, Hao, Claudio Gomes, Casper Thule, Kenneth Lausdahl, Alexandros Iosifidis, and Peter Gorm Larsen. “Introduction to Digital Twin
Engineering.” In 2021 Annual Modeling and Simulation Conference (ANNSIM), 1-12. Fairfax, VA, USA: IEEE, 2021. https://doi.org/10.23919/
ANNSIMS52504.2021.9552135.

2. Video recording of presentation by Claudio Gomes

-96/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example_digital-twin_incubator/
https://doi.org/10.23919/ANNSIM52504.2021.9552135
https://doi.org/10.23919/ANNSIM52504.2021.9552135
https://videos.ida.dk/media/Introduction+to+Digital+Twin+Engineering+with+Cl-C3-A1udio+-C3-82ngelo+Gon-C3-A7alves+Gomes-2C+Aarhus+Universitet/1_7r1j05g8/256930613

2.8.10 Firefighter Mission in a Burning Building

2.8.10 Firefighter Mission in a Burning Building

In a firefighter mission, it is important to monitor the oxygen levels of each firefighter's Self Contained Breathing Apparatus (SCBA) in the

context of their mission.

Physical Twin Overview

Image: Schematic overview of a firefighter mission. Note the mission commander on the lower left documenting the air supply pressure
levels provided by radio communication from the firefighters inside and around the burning building. This image was created with the
assistance of DALLE.

We assume the following scenario:

* a set of firefighters work to extinguish a burning building
* they each use an SCBA with pressurised oxygen to breath

* a mission commander on the outside coordinates the efforts and surveills the oxygen levels

Digital Twin Overview

In this example a monitor is implemented, that calculates how much time the firefighers have left, until they need to leave the building. To

that end, the inputs used are:

* 3D-model of the building in which the mission takes place,
* pressure data of a firefighters SCBA and

« firefighters location inside of the building
are used to estimate:

* the shortest way out,
* how much time this will need and

* how much time is left until all oxygen from the SCBA is used up.

-97/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.10 Firefighter Mission in a Burning Building

The remaining mission time is monitored and the firefighter receive a warning if it drops under a certain threshold.

P

L=

Mock firefighter

Models

‘\\\

IFC file (lab.ifc)
PathOxygen
N Estimate.fmu /
Data B

InfluxDB || MQTT
Database || Broker

Digital Twin Reusable Assets

4

IFC2Graph
Graph2Path

Monitor
(TeSSLa with
run-time
specification)

/

=l

/ Digital Twin: F

IFC2Graph «— IFCfile

élocation Y
S » Graph2Path

: : load
Path2Time

irefighter

load

~

PathOxygen
Estimate.fmu

)

oxygen remaining

InfluxDB
Database

Legend for the data exchange protocol:

Influx
Dashboard

via MQTT Broker

- - -- via MQTT Broker and Telegraf

This example is an implementation of the the paper Digital Twin for Rescue Missions--a Case Study by Leucker et al.

QUICK CHECK

Before running this example, the following files must be verified to be at the correct locations:

/workspace/examples/
data/o5g/input/
runTessla.sh
sensorSimulation.py
telegraf.conf

models/
lab. ifc
makefmu.mos
PathOxygenEstimate.mo

tools/
graphToPath.py
ifc_to_graph
pathToTime.py
tessla-telegraf-connector/
tessla-telegraf-connector/
tessla. jar

specification.tessla (run-time specification)

digital_twins/o5g/
main.py
config
Lifecycle/ (scripts)

DIGITAL TWIN CONFIGURATION

All configuration for this example is contained in digital_twins/o5g/config .

-98/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

https://ceur-ws.org/Vol-3507/paper4.pdf
https://ceur-ws.org/Vol-3507/paper4.pdf

2.8.10 Firefighter Mission in a Burning Building

To use the MQTT-Server, account information needs to be provided. The topics are set to their default values, which allow the DT to access
the mock physical twins sensor metrics and to send back alerts.

export 05G_MQTT_SERVER=
export 05G_MQTT_PORT=
export 05G_MQTT_USER=
export 05G_MQTT_PASS=

export 05G6_MQTT_TOPIC_SENSOR="vgiot/ue/metric
export 05G6_MQTT_TOPIC_AIR_PREDICTION='vgiot/dt/prediction
export 05g_MQTT_TOPIC_ALERT='vgiot/dt/alerts

© N U AW

This example uses InfuxDB as a data storage, which will need to be configured to use your Access data. The following configuration steps
are needed:

* Log into the InfluxDB Web UI

* Obtain org name (is below your username in the sidebar)

* Create a data bucket if you don't have one already in Load Data -> Buckets

* Create an API access token in Load Data -> API Tokens , Copy and save this token somewhere immediately, you can not access it later!

export 05G_INFLUX_SERVER=
export 05G_INFLUX_PORT=
export 05G_INFLUX_TOKEN=
export 05G_INFLUX_ORG=
export 05G_INFLUX_BUCKET=

GoA W e

Lifecycle Phases

The lifecycles that are covered include:

Lifecycle Phase Completed Tasks

Install Installs Open Modelica, Rust, Telegraf and the required pip dependencies
Create Create FMU from Open Modelica file

Execute Execute the example in the background tmux terminal session
Terminate Terminate the tmux terminal session running in the background

Clean Delete the temporary files

Run the example

INSTALL
Run the install script by executing

1 Lifecycle/install

This will install all the required dependencies from apt and pip, as well as Open Modelica, Rust, Telegraf and the required pip
dependencies from their respective repos.

Create
Run the create script by executing

1 Lifecycle/create

This will compile the modelica model to an Functional Mockup Unit (FMU) for the correct platform.

-99/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.10 Firefighter Mission in a Burning Building

Exceute
To run the Digital Twin execute

1 Lifecycle/execute

This will start all the required components in a single tmux session called o5g in the background. To view the running Digital Twin attatch
to this tmux session by executing

1 tmux a -t o5g

To detatch press Ctrl-b followed by d.

>-] Terminal - tmux a A - B X
File Edit View Terminal Tabs Help
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction air-remaining=0.0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction ai ini .0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fbh30 Publishing "prediction ai ini .3338158" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fbh30 Publishing "prediction ai ini .7421294" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fbh30 Publishing "prediction ai ini 3338158" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction ai ini .0" to vgiot/dt/prediction
vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction ai ini .0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fbh30 Publishing "prediction air-remaining=0.0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction air-remaining=0.0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction air-remaining=0.0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction air-remaining=0.0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fbh30 Publishing "prediction air-remaining=3.16896" to vgiot/dt/prediction
Bublishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fbh30 Publishing "prediction air-remaining=0.7421294" to vgiot/dt/prediction
#ublishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fbh30 Publishing "prediction air-remaining=3.16896" to vgiot/dt/prediction
‘ublishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fbh30 Publishing "prediction air-remaining=3.16896" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction air-remaining=0.0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction air-remaining=0.0" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction air-remaining=1.501766" to vgiot/dt/prediction
Publishing vgiot/ue/metric/f593e018-9c24-11ed-8ec3-00155d03fb30 Publishing "prediction air-remaining=0.0" to vgiot/dt/prediction

prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction air-rema|diction air-remaining=0 1709809197586812041

ini .16896 1709809194583031157

lowAirAlert,host=201712faaa74 value=true 1709809193916000000 prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction:air-rem|
prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction air-remalaining= ©

ini .16896 1709809195582989632 send to telegraf: "lowAirAlert value=false 1709809196918000000"
lowAirAlert,host=201712faaa74 value=true 1709809194916000000 Valid Message: prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/pre|
prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction air-rema|diction air-remainin .501766 1709809198589534313

ining=0 1709809196587753710

lowAirAlert,host=201712faaa74 value=false 1709809195917000000 prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction:air-rem|
prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction air-remalaining= 1.501766

ining=0 1709809197586812041 send to telegraf: "lowAirAlert value=false 1709809197919000000"
lowAirAlert,host=201712faaa74 value=false 1709809196918000000 Valid Message: prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/pre|
prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction air-rema|diction air-remaining=0 1709809199590057473

ining=1.501766 1709809198589534313

lowAirAlert,host=201712faaa74 value=false 1709809197919000000 prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction:air-rem|
prediction,host=201712faaa74,output_exclude=true,topic=vgiot/dt/prediction air-rema|aining= 0

ining=0 1709809199590057473 send to telegraf: "lowAirAlert value=false 1709809198919000000"

The tmux session contains 4 components of the digital twin:

Panel location Purpose

Top Left Sensor simulator generating random location and O2-level data

Top Right Main Digital Twin receives the sensor data and calculates an estimate of how many minutes of air remain
Bottom Left Telegraf to convert between different message formats, also displays all messages between components
Bottom Right TeSSLa monitor raises an alarm, if the remaining time is to low.

Examine the Results

For additional mission awareness, we recommend utilising the Influx data visualisation. We provide a dashboard configuration in the file
influx-dashoard.json. Log in to your Influx Server to import (usually port 8086). A screenshot of the dashboard is given here.

-100/249 - Copyright €

2026 The INTO-CPS Association

05G Firefighter

8 ADD CELL = ADD NOTE v Show Variables Enable Annotations ‘ []

Oxygen in the Tank

Oxygen Remainingin the Tank

800m N A

600m
a0om | |/ \l

200m

|
1:25:00 PM GMT+1

2.8.10 Firefighter Mission in a Burning Building

ENABLE AUTO REFRESH © Past1h N

1:30:00 PM GMT+1 1:35:00 PM GMT+1

The data gets stored in o5g->prediction->air-remaining->37ae3e4fb3ea->true->vgiot/dt/prediction variable of the InfluxDB. In addition to importing
dashboard configuration given above, it is possible to create your custom dashboards using the stored data.

Terminate

To stop the all components and close the tmux session execute

1

Clean

Lifecycle/terminate

To remove temoporary files created during execution

1

Lifecycle/clean

-101/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

Overview
This digital twin is derived from the Mass Spring Damper digital twin.

The mass spring damper digital twin (DT) comprises two mass spring dampers and demonstrates how a co-simulation based DT can be
used within the DTaaS. This version of the example is expanded with a monitor generated by NuRV. More information about NuRV is

available here.

Example Diagram

LT -

-
Seu

Se

Example Structure

There are two simulators included in the study, each representing a mass spring damper system. The first simulator calculates the mass
displacement and speed of for a given force acting on mass . The second simulator calculates force given a displacement and speed of

mass . By coupling these simulators, the evolution of the position of the two masses is computed.

Additionally, a monitor is inserted in the simulation to check at runtime whether the displacement of the two masses stays below a

maximum threshold.

(FMU4) (FMU5) (FMU3) (FMUy)

[Maestro]

[MassSpringDamper1.fmu] [MassSpringDamper2.fmu] NuRV Monitor] Rtl

-102/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

Asset Type Names of Assets Visibility Reuse in Other Examples
Models MassSpringDamperl.fmu Private Yes
MassSpringDamper2.fmu Private Yes
m2.fmu Private No
RtL.fmu Private Yes
Specification m2.smv Private No
Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

The co-sim.json and time.json are two DT configuration files used for executing the digital twin. These two files can be modified to
customize the DT for specific requirements.

Lifecycle Phases

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool
Generates and compiles the monitor FMU

Execute Produces and stores output in data/mass-spring-damper-monitor/output directory

Clean Clears run logs and outputs

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital_twins/mass-spring-damper-monitor

If required, change the execute permission of lifecycle scripts you need to execute, for example:
1 chmod +x Lifecycle/create
Now, run the following scripts:
CREATE

* Installs Open Java Development Kit 17 in the workspace.

* Generates and compiles the monitor FMU from the NuRV specification

1 Lifecycle/create

EXECUTE

Run the the Digital Twin. Since this is a co-simulation based digital twin, the Maestro co-simulation tool executes co-simulation using the
two FMU models.

1 Lifecycle/execute

-103/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

ANALYZE PHASE
Process the output of co-simulation to produce a plot at: /workspace/examples/data/mass-spring-damper-monitor/output/plots .

1 Lifecycle/analyze

A sample plot is given here.

Mass spring dumper with monitor

O e —— S ——————— e ——————— ————————— -

0.8 A

0.6

0.4 1

0.2 1

0.0 e
\/

_0_2 -

—— msdli.x1 - msd2i.x2
-0.4 A —— monitor output
—== monitor threshold

0 2 < 6 8 10

In the plot, three color-coded indicators are used to represent different values. The blue line shows the distance between the two masses,
while the green indicates the monitor's verdict. A red dashed line serves as a reference point, marking the distance checked by the
monitor. Since the distance of the masses is always below the threshold, the output of the monitor is fixed to unknown (0).

Examine the results
The results can be found in the /workspace/examples/data/mass-spring-damper-monitor/output directory.

You can also view run logs in the /workspace/examples/digital _twins/mass-spring-damper-monitor.

TERMINATE PHASE
Terminate to clean up the debug files and co-simulation output files.

1 Lifecycle/terminate

-104/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.11 Mass Spring Damper with NuRV Runtime Monitor

References
More information about co-simulation techniques and mass spring damper case study are available in:

1 Gomes, Claudio, et al. "Co-simulation: State of the art."
2 arXiv preprint arXiv:1702.00686 (2017).

The source code for the models used in this DT are available in mass spring damper github repository.

-105/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/example-mass_spring_damper

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

Overview

This example demonstrates a fault injection (FI) enabled digital twin. A live DT is subjected to simulated faults received from the
environment. The simulated faults are specified as part of DT configuration and can be changed for new instances of DTs. This version of
the example is expanded with a monitor generated by NuRV. More information about NuRV is available here.

In this co-simulation based DT, a watertank case-study is used; co-simulation consists of a tank and controller. The goal of which is to keep
the level of water in the tank between Level-1 and Level-2. The faults are injected into output of the water tank controller
(Watertankcontroller-c.fmu) from 12 to 20 time units, such that the tank output is closed for a period of time, leading to the water level
increasing in the tank beyond the desired level (Level-2). Additionally, a monitor is inserted in the simulation to check at runtime whether
the level of the water stays below a maximum threshold.

Example Diagram

Level-2

Level-1

-106/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

Example Structure

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

(FMUy) (FMU5)

[Watertankcontroller-c.fmu [Singlewatertank-20sim.fmu NuRV Monitor] Rtl

(FMU3) (FMUy)

[Maestro]

Digital Twin Configuration

This example uses two models and one tool. The specific assets used are:

Asset Type Names of Assets Visibility
Models watertankcontroller-c.fmu Private
singlewatertank-20sim.fmu Private
ml.fmu Private
RtLfmu Private
Specification ml.smv Private
Tool maestro-2.3.0-jar-with-dependencies.jar Common

Reuse in Other Examples
Yes
Yes
No
Yes
No

Yes

The multimodelFI.json and simulation-config.json are two DT configuration files used for executing the digital twin. These two files can be

modified to customize the DT for specific requirements.

e The faults are defined in wt_fault.xml.

Lifecycle Phases

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool
Generates and compiles the monitor FMU

Execute Produces and stores output in data/water_tank_FI_monitor/output directory

Clean Clears run logs and outputs

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital_twins/water_tank_FI_monitor

If required, change the execute permission of lifecycle scripts you need to execute, for example:

1 chmod +x Lifecycle/create

Now, run the following scripts:

-107/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

CREATE

Installs Open Java Development Kit 17 and pip dependencies. The pandas and matplotlib are the pip dependencies installated. The
monitor FMU from the NuRV specification is generated and compiled.

1 Lifecycle/create
EXECUTE
Run the co-simulation. Generates the co-simulation output.csv file at /workspace/examples/data/water_tank_FI_monitor/output .
1 Lifecycle/execute
ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/water_tank_FI_monitor/output/plots/ .

1 Lifecycle/analyze

A sample plot is given here.

tank level - FI with monitor

. —— water level
- control output

. —— monitor output
—== monitor threshold

7 -

(5 -

55 -

4 -l

3 -l

I i

1_ -

0

0 5 10 15 20 25 30 » %0

In the plot, four color-coded indicators are used to represent different values. The blue line shows the water tank level, while orange
represents the control output and green indicates the monitor's verdict. A red dashed line serves as a reference point, marking the level
checked by the monitor. As the water level exceeds this threshold, the monitor's verdict changes from unknown (0) to false (2).

Examine the results
The results can be found in the /workspace/examples/data/water_tank_FI_monitor/output directory.

You can also view run logs in the /workspace/examples/digital_twins/water_tank_FI_monitor.

-108/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor

TERMINATE PHASE
Clean up the temporary files and delete output plot

1 Lifecycle/terminate

References
More details on this case-study can be found in the paper:

M. Frasheri, C. Thule, H. D. Macedo, K. Lausdahl, P. G. Larsen and

L. Esterle, "Fault Injecting Co-simulations for Safety,"

2021 5th International Conference on System Reliability and Safety (ICSRS),
Palermo, Italy, 2021.

W N

The fault-injection plugin is an extension to the Maestro co-orchestration engine that enables injecting inputs and outputs of FMUs in an
FMI-based co-simulation with tampered values. More details on the plugin can be found in fault injection git repository. The source code
for this example is also in the same github repository in a example directory.

-109/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/fault-injection-maestro
https://github.com/INTO-CPS-Association/fault-injection-maestro/blob/development/fi_example/README.md

2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor

2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor

Overview
This example demonstrates how to validate some digital twin components using FMU monitors (in this example, the monitors are
generated with NuRV[1]).

Simulated scenario

This example validates some components of the Incubator digital twin, by performing a simulation in which the commponents are
wrapped inside FMUs, and are then inspected at runtime by some a FMU monitor generated by NuRV. Please note that the link to
Incubator digital twin is only provided to know the details of the incubator physical twin. The digital twin (DT) presented here is a co-
simulation DT of the Incubator.

The input data for the simulation is generated by a purpose-built FMU component named source, which supplies testing data to the
anomaly detector, simulating an anomaly occurring at time t=60s. An additional component, watcher, is employed to verify whether the
energy saver activates in response to an anomaly reported by the anomaly detector.

The output of the watcher is the passed to the monitor, which ensures that when an anomaly is detected, the energy saver activates within
a maximum of three simulation cycles.

Example structure

A diagram depicting the logical software structure of the example can be seen below.

" kalman_input _ [~
Anomaly)) —
sensor Detector lid_open
Source Monitor
AN J/ Energy Watcher |energy_saving
enabled Saver desired_temp

Digital Twin Configuration

The example uses the following assets:

Asset Type Names of Assets Visibility Reuse in other Examples
Models anomaly_detection.fmu Private No
energy_saver.fmu Private No
Source.fmu Private No
Watcher.fmu Private No
Specification safe-operation.smv Private No
Tool maestro-2.3.0-jar-with-dependencies.jar Common Yes

The safe-operation.smy file contains the default monitored specification as described in the Simulated scenario section.

-110/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor

Lifecycle phases

The lifecycle phases for this example include:

Lifecycle Phase Completed Tasks

Create Installs Java Development Kit for Maestro tool
Generates and compiles the monitor FMU

Execute Produces and stores output in data/incubator-NuRV-monitor-validation/output directory

Clean Clears run logs and outputs

If required, change the execute permissions of lifecycle scripts you need to execute. This can be done using the following command

1 chmod +x Lifecycle/{script}

where {script} is the name of the script, e.g. create, execute etc.

Run the example
To run the example, change your present directory.

1 cd /workspace/examples/digital_twins/incubator-NuRV-monitor-validation

If required, change the execute permission of lifecycle scripts you need to execute, for example:
1 chmod +x Lifecycle/create

Now, run the following scripts:

CREATE

* Installs Open Java Development Kit 17 in the workspace.

* Generates and compiles the monitor FMU from the NuRV specification

1 Lifecycle/create

EXECUTE

Run the the Digital Twin. Since this is a co-simulation based digital twin, the Maestro co-simulation tool executes co-simulation using the
FMU models.

1 Lifecycle/execute

ANALYZE PHASE

Process the output of co-simulation to produce a plot at: /workspace/examples/data/incubator-NuRV-monitor-validation/output/plots .

1 Lifecycle/analyze

A sample plot is given here.

-111/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor

Incubator Validation

35 A

30 A

25 A

—— temperaturesensor | 200 |lesmsseeecseo\mseeeeed
—— temperature estimate
—— monitor output

15 4 ===~ desired temperature

20 A

10 -

T T T T

0 20 40 60 80 100

In the plot, four color-coded indicators provide a visual representation of distinct values. The blue line depicts the simulated temperature,
while orange one represents the temperature estimate. A red dashed line indicates the target temperature set by the energy saver
component. The green line shows the monitor's output verdict. As observed, when there is a disparity between the estimated and actual
temperatures, the energy saver adjusts the target temperature downward, indicating that the component is working properly. Thus, the
output of the monitor is fixed at unknown (0), signifying that the monitoring property is not violated.

Examine the results

The results can be found in the /workspace/examples/data/incubator-NuRV-monitor-validation/output directory where the logs are also
included.

Figures of the output results can be found in the /workspace/examples/data/incubator-NuRV-monitor-validation/output directory.

TERMINATE PHASE
Terminate to clean up the debug files and co-simulation output files.

1 Lifecycle/terminate

References

1. More information about NuRV is available here.

-112/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

2.8.14 Incubator Digital Twin with NuRV monitoring service

2.8.14 Incubator Digital Twin with NuRV monitoring service
Overview

This example demonstrates how a runtime monitoring service (in this example NuRV[1]) can be connected with the Incubator digital twin
to verify runtime behavior of the Incubator.

Simulated scenario

This example simulates a scenario where the lid of the Incubator is removed and later put back on. The Incubator is equipped with
anomaly detection capabilities, which can detect anomalous behavior (i.e. the removal of the lid). When an anomaly is detected, the
Incubator triggers an energy saving mode where the heater is turned off.

From a monitoring perspective, we wish to verify that within 3 simulation steps of an anomaly detection, the energy saving mode is
turned on. To verify this behavior, we construct the property: . Whenever a True or False verdict is produced by the monitor; it is reset,
allowing for the detection of repeated satisfaction/violation detections of the property.

The simulated scenario progresses as follows:

» Initialization: The services are initialized and the Kalman filter in the Incubator is given 2 minutes to stabilize. Sometimes, the anomaly
detection algorithm will detect an anomaly at startup even though the lid is still on. It will disappear after approx 15 seconds.
* After 2 minutes: The lid is lifted and an anomaly is detected. The energy saver is turned on shortly after

* After another 30 seconds: The energy saver is manually disabled producing a False verdict.

* After another 30 seconds: The lid is put back on and the anomaly detection is given time to detect that the lid is back on. The simulation
then ends.

Example structure

A diagram depicting the logical software structure of the example can be seen below.

«TimeSeriesDB»
InfluxDB|

(Mock) PhysicalTwin DigitalTwin Monitoring -
omniNames %:l
-]
" Controller
< A emperaure R amarcier 5 | 2] 2] ontorcomnector 25 | o)
Status of heater @ Estimates full Plant state Implements energy Convenience service to record Connect DT output with e
. and T_heater) saving and anomaly detection all state messages into DB monitor

S NURV service %:]
low_level_driver_server L / —/—\CO Monitor safe_operation.smv

<<MessageExchange>>
RabbitMQ

Legend:

Component %:] interface interface
N 3} rovide—))—required
Main variables, or responsibili

The execute.py script is responsible for orchestrating and starting all the relevant services in this example. This includes the Incubator DT,
CORBA naming service (omniNames) and the NuRV monitor server as well as implementing the Monitor connector component that
connects the DT output to the NuRV monitor server.

The NuRV monitor server utilizes a CORBA naming service where it registers under a specific name. A user can then query the naming
service for the specific name, to obtain a reference to the monitor server. For more information on how the NuRV monitor server works,
please refer to [1].

After establishing connection with the NuRV monitor server, the Incubator DT is started and a RabbitMQ client is created that subscribes to
changes in the anomaly and energy_saving states of the DT. Each time an update is received of either state, the full state (the new updated
state and the previous other state) is pushed to the NuRV monitor server whereafter the verdict is printed to the console.

Digital Twin Configuration

Before running the example, the simulation.conf file should be configured with the appropriate RabbitMQ credentials.

-113/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.14 Incubator Digital Twin with NuRV monitoring service

The example uses the following assets:

Asset Type Names of Assets Visibility Reuse in other Examples
Service common/services/NuRV_orbit Common Yes
DT common/digital_twins/incubator Common Yes
Specification safe-operation.smv Private No
Script execute.py Private No

The safe-operation.smy file contains the default monitored specification as described in the Simulated scenario section. These can be
configured as desired.

Lifecycle phases

The lifecycle phases for this example include:

Lifecycle phase Completed tasks
create Downloads the necessary tools and creates a virtual python environment with the necessary dependencies
execute Runs a python script that starts up the necessary services as well as the Incubator simulation. Various status

messages are printed to the console, including the monitored system states and monitor verdict.

clean Removes created data directory and incubator log files.

If required, change the execute permissions of lifecycle scripts you need to execute. This can be done using the following command

1 chmod +x Lifecycle/{script}

where {script} is the name of the script, e.g. create, execute etc.

Running the example
To run the example, first run the following command in a terminal:

1 cd /workspace/examples/digital_twins/incubator-monitor-server/

Then, first execute the create script (this can take a few mins depending on your network connection) followed by the execute script using
the following command:

1 Lifecycle/{script}
The execute script will then start outputting system states and the monitor verdict approx every 3 seconds. The output is printed as follows

"State: {anomaly state} & {energy_saving state}, verdict: {Verdict}" where "anomaly" indicates that an anomaly is detected and "!
anomaly" indicates that an anomaly is not currently detected. The same format is used for the energy_saving state.

The monitor verdict can be True, False or Unknown, where the latter indicates that the monitor does not yet have sufficient information to
determine the satisfaction of the property.

-114/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.14 Incubator Digital Twin with NuRV monitoring service

An example output trace is provided below:

Running scenario with initial state: Lid closed and energy saver on
Setting energy saver mode: enable

Setting G_box to: 0.5763498

State: !anomaly & !energy_saving, verdict: True

State: !anomaly & !energy_saving, verdict: True

State: anomaly & !energy_saving, verdict: Unknown
State: anomaly & energy_saving, verdict: True
10 State: anomaly & energy_saving, verdict: True

©C NG A WN

There is currently some startup issues with connecting to the NuRV server, and it will likely take a few tries before the connection is
established. This is however handled automatically.

References

1. Information on the NuRV monitor can be found on FBK website.

-115/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service

2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service

Overview
This example demonstrates how an FMU can be used as a runtime monitoring service (in this example NuRV[1]) and connected with the
Incubator digital twin to verify runtime behavior of the Incubator.

Simulated scenario

This example simulates a scenario where the lid of the Incubator is removed and later put back on. The Incubator is equipped with
anomaly detection capabilities, which can detect anomalous behavior (i.e. the removal of the lid). When an anomaly is detected, the
Incubator triggers an energy saving mode where the heater is turned off.

From a monitoring perspective, we wish to verify that within 3 messages of an anomaly detection, the energy saving mode is turned on. To
verify this behavior, we construct the property:

The monitor will output the unknown state as long as the property is satisfied and will transition to the false state once a violation is
detected.

The simulated scenario progresses as follows:

» Initialization: The services are initialized and the Kalman filter in the Incubator is given 2 minutes to stabilize. Sometimes, the anomaly
detection algorithm will detect an anomaly at startup even though the lid is still on. It will disappear after approx 15 seconds.

* After 2 minutes: The lid is lifted and an anomaly is detected. The energy saver is turned on shortly after.

* After another 30 seconds: The energy saver is manually disabled producing a false verdict.

* After another 30 seconds: The lid is put back on and the anomaly detection is given time to detect that the lid is back on. The monitor is
then reset producing an Unknown verdict again. The simulation then ends.

Example structure

A diagram depicting the logical software structure of the example can be seen below.

Digital Twin

Internal Service

Other DT

Python
Assets yt

rabbitmq-fmpy
A

NuRV FMU

User Workspace

RabbitMQ Server

Physical Twin > (platform service)

DTaasS Platform

The execute script is responsible for starting the NuRV service and running the Python script that controls the scenario (execute.py).

The execute.py script starts the Incubator services and runs the example scenario. Once the Incubator DT is started, a RabbitMQ client is
created that subscribes to changes in the anomaly and energy_saving states of the DT, as well as the verdicts produced by the NuRV service.
Each time an update is received, the full state and verdict is printed to the console.

-116/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service

Digital Twin Configuration

Before running the example, the simulation.conf file should be configured with the appropriate RabbitMQ credentials.

The example uses the following assets:

Asset Type Names of Assets Visibility Reuse in other Examples
Tools common/tool/NuRV/NuRV Common Yes
Other common/fmi2_headers Common Yes
DT common/digital_twins/incubator Common Yes
Specification safe-operation.smv Private No
Script execute.py Private No

The safe-operation.smy file contains the default monitored specification as described in the Simulated scenario section. These can be
configured as desired.

Lifecycle phases

The lifecycle phases for this example include:

Lifecycle phase Completed tasks
create Downloads the necessary tools and creates a virtual python environment with the necessary dependencies
execute Runs a python script that starts up the necessary services as well as the Incubator simulation. Various status

messages are printed to the console, including the monitored system states and monitor verdict.

If required, change the execute permissions of lifecycle scripts you need to execute. This can be done using the following command.

1 chmod +x Lifecycle/{script}

where {script} is the name of the script, e.g. create, execute etc.

Running the example
To run the example, first run the following command in a terminal:

1 cd /workspace/examples/digital_twins/incubator-NuRV-fmu-monitor-service/

Then, first execute the create script followed by the execute script using the following command:

1 Lifecycle/{script}

The execute script will then start outputting system states and the monitor verdict approx every 3 seconds. The output is printed as
follows.

"State: {anomaly state} & {energy_saving state}"

where "anomaly" indicates that an anomaly is detected and "!anomaly" indicates that an anomaly is not currently detected. The same
format is used for the energy_saving state. NuRV verdicts are printed as follows

"Verdict from NuRV: {verdict}".

The monitor verdict can be false or unknown, where the latter indicates that the monitor does not yet have sufficient information to
determine the satisfaction of the property. The monitor will never produce a true verdict as the entire trace must be verified to ensure
satisfaction due to the G operator. Thus the unknown state can be viewed as a tentative true verdict.

-117/249 - Copyright © 2022 - 2026 The INTO-CPS Association

2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service

An example output trace is provided below:

Using LIFECYCLE_PATH: /workspace/examples/digital_twins/incubator-NuRV-fmu-monitor-service/lifecycle
Using INCUBATOR_PATH: /workspace/examples/digital_twins/incubator-NuRV-fmu-monitor-service/lifecycle/../../../common/digital_twins/incubator
Starting NuRV FMU Monitor Service, see output at /tmp/nurv-fmu-service.log
NuRVService.py PID: 13496

Starting incubator

Connected to rabbitmq server

Running scenario with initial state: Lid closed and energy saver on
Setting energy saver mode: enable

10 Setting G_box to: 0.5763498

11 State: !anomaly & !energy_saving

12 State: !anomaly & !energy_saving

13 Verdict from NuRV: unknown

14 State: lanomaly & !energy_saving

15 State: !anomaly & !energy_saving

16 Verdict from NuRV: unknown

17 State: !anomaly & !energy_saving

18 State: !anomaly & !energy_saving

19 Verdict from NuRV: unknown

20 State: !anomaly & !energy_saving

21 State: !anomaly & !energy_saving

22 Verdict from NuRV: unknown

23 State: !anomaly & !energy_saving

24 State: !anomaly & !energy_saving

25 Verdict from NuRV: unknown

©C NG A WN

References

1. Information on the NuRV monitor can be found on FBK website.

-118/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://es-static.fbk.eu/tools/nurv/

3. Admin

3. Admin

3.1 Install

3.1.1 Overview
Install

The objective is to install and administer the DTaa$ platform for users.

ﬂrning

The DTaaS platform has been developed and tested on docker CE v28. The software does not work on docker CE v29 yet.

The DTaaS$ platform can be installed in different ways. Each version serves a different purpose.

]st Setup on Localhost

The localhost installation is easy for first time users. Please give it a try.

Otherwise, the installation setup that fits specific needs should be selected.

Installation Setup Purpose

localhost Installation of the DTaa$S on a local computer for a single user; does not require a web server. This setup does
not require a domain name.

secure localhost Installation of the DTaa$ on a local computer for a single user over HTTPS with integrated GitLab installation;
does not require a web server. This setup does not require a domain name.

Server Installation of the DTaa$ on a server for multiple users. The requirements should be reviewed. Hosting over
HTTPS with integrated GitLab installation is also available.

One vagrant Installation of the DTaa$ on a virtual machine; can be used for single or multiple users.
machine

Two vagrant Installation of the DTaa$S on two virtual machines; can be used for single or multiple users.
machines

The core DTaaS$ platform is installed on the first virtual machine, and all services (RabbitMQ, MQTT, InfluxDB,
Grafana and MongoDB) are installed on the second virtual machine.

Independent Can be used independently; does not require full installation of the DTaaS.
Packages

The installation steps is a recommended starting point for the installation process.

Administer

A CLIis available for adding and deleting users of a running application.

-119/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.docker.com/engine/release-notes/28/
https://docs.docker.com/engine/release-notes/29/

3.1.2 Installation Steps

3.1.2 Installation Steps
Complete the DTaa$S Platform

The DTaasS platform is available in two flavors. One is localhost, which is suitable for single-user, local usage. The other is production
server, which is suitable for multi-user setup.

In both cases, the installation is a three-step process.

SETUP AUTHORIZATION
DTaaS$ provides security using OAuth 2.0 authorization for both the react client frontend and backend services.

A default frontend authorization application is configured for all localhost installations, and backend authorization is not required for
localhost installation.

The production server installation requires both react client frontend and backend services application configurations.

CONFIGURE COMPONENTS
DTaasS is available as a docker compose application. Four docker compose files are provided:

1. compose. local.yml for localhost installation served over HTTP connection.
2. compose. local.secure.yml for secure localhost installation served over HTTPS connection.
3. compose.server.yml for production server installation served over HTTP connection.

4. compose.server.secure.yml for production server installation served over HTTPS connection.

These four compose files require environment configuration files. The explanation of this configuration file is available directly on the
installation pages.

In addition, the react client frontend requires configuration, which is explained on this page.

INSTALL

The installation instructions on either the localhost or production server pages should be followed.

Independent Packages

Each release of the DTaaS$ also includes four reusable packages. These packages have dedicated documentation.

-120/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.3 Requirements

3.1.3 Requirements

b

These optional requirements are not needed for localhost installation. They are only required for installation of the DTaa$S on a production
web server.

Two optional requirements exist for installing the DTaasS.

OAuth 2.0 Provider

The DTaaS$ platform uses OAuth 2.0 for user authorization. It is possible to use either gitlab.com or a custom OAuth 2.0 service provider.

Domain name

The DTaasS platform is a web application and is preferably hosted on a server with a domain name such as foo.com. However, installation
on a local computer with access at localhost is also supported.

-121/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.4 Authorization

3.1.4 Authorization
OAuth 2.0 for React Client

To enable user authorization on the DTaa$S React client website, the OAuth 2.0 authorization protocol is used, specifically the PKCE
authorization flow. The following steps describe the setup process:

1. Choose a GitLab Server:

* OAuth 2.0 authorization must be set up on a GitLab server. An on-premise GitLab installation is preferrable to commercial https://
gitlab.com.

* The GitLab Omnibus Docker can be used for this purpose.

» The OAuth 2.0 application should be configured as an instance-wide authorization type.
2. Determine the Website's Hostname:

* Before setting up OAuth on GitLab, the hostname for the website must be determined. Using a self-hosted GitLab instance is
recommended, which will be used in other parts of the DTaaS$ platform.

3. Define Callback and Logout URLs:

* For the PKCE authorization flow to function correctly, two URLs are required: a callback URL and a logout URL.

¢ The callback URL informs the OAuth 2.0 provider of the page where signed-in users should be redirected. It differs from the landing
homepage of the DTaaS platform.

* The logout URL specifies where users will be directed after logging out.
4. OAuth 2.0 Application Creation:

* During the creation of the OAuth 2.0 application on GitLab, the scope must be specified. The openid, profile, read_user, read_repository,
and api scopes should be selected.

User Settings > Applications

‘ Q Search page

Applications

Manage applications that can use GitLab as an OAuth provider, and applications that you've authorized to use your account.

Your applications 33 4

Add new application

Name

‘ DTaaS Client Authorization

Redirect URI

http://foo.com/Library

Use one line per URI

(] Confidential

Enable only for confidential applications exclusively used by a trusted backend server that
can securely store the client secret. Do not enable for native-mobile, single-page, or other
JavaScript applications because they cannot keep the client secret confidential.

-122/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.com
https://gitlab.com
https://docs.gitlab.com/ee/install/docker.html
https://docs.gitlab.com/ee/integration/oauth_provider.html#create-an-instance-wide-application

3.1.4 Authorization

5. Application ID:

* After successfully creating the OAuth 2.0 application, GitLab generates an application ID. This is a long string of HEX values required for
the configuration files.

Scopes
@ api

Grants complete read/write access to the API, including all groups and projects, the
container registry, and the package registry.

() read_api
Grants read access to the API, including all groups and projects, the container registry, and
the package registry.

@ read_user
Grants read-only access to the authenticated user's profile through the /user API endpoint,
which includes username, public email, and full name. Also grants access to read-only API
endpoints under /users.

() create_runner
Grants create access to the runners.

(C) k8s_proxy
Grants permission to perform Kubernetes API calls using the agent for Kubernetes.
@& read_repository

Grants read-only access to repositories on private projects using Git-over-HTTP or the
Repository Files API.

() write_repository

Grants read-write access to repositories on private projects using Git-over-HTTP (not using
the API).

(O) read_observability

Grants read-only access to GitLab Observability.
() write_observability

Grants write access to GitLab Observability.
(O) ai_features

Grants access to GitLab Duo related APl endpoints.

(O) sudo

Grants permission to perform API actions as any user in the system, when authenticated as
an admin user.

() admin_mode
Grants permission to perform APl actions as an administrator, when Admin Mode is enabled.

& openid
Grants permission to authenticate with GitLab using OpenID Connect. Also gives read-only
access to the user's profile and group memberships.

& profile
Grants read-only access to the user's profile data using OpenlD Connect.

() email
Grants read-only access to the user's primary email address using OpenID Connect.

Save application ’ Cancel ’

-123/249 - Copyright © 2022 - 2026 The INTO-CPS Association

6. Required Information from OAuth 2.0 Application:

3.1.4 Authorization

* The following information from the OAuth 2.0 application registered on GitLab is required:

GitLab Variable Name Variable Name in Client env.js
OAuth 2.0 Provider REACT_APP_AUTH_AUTHORITY
Application ID REACT_APP_CLIENT_ID
Callback URL REACT_APP_REDIRECT_URI
Scopes REACT_APP_GITLAB_SCOPES

User Settings > Applications > DTaa$ Client Authorization

@ The application was created successfully.

Default Value

https://gitlab.foo.com/

https://foo.com/Library

openid, profile, read_user, read_repository, api

‘ Q Search page

Application: DTaaS Client Authorization

® @ Renew secret

Application ID 2bcc5904aada2e9adeTa | [
Secret
This is the only time the secret is accessible. Copy the secret and store it securely.
Callback URL http://foo.com/Library
Confidential No
Scopes « api (Access the authenticated user's API)

« read_user (Read the authenticated user's personal information)

« read_repository (Allows read-only access to the repository)

« openid (Authenticate using OpenID Connect)

« profile (Allows read-only access to the user's personal information using OpenID Connect)

Continue Edit

7. Create User Accounts:

User accounts must be created in GitLab for all usernames chosen during installation. The trial installation script includes two default
usernames - user and user2. For all other installation scenarios, accounts with specific usernames must be created on GitLab.

-124/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.foo.com/
https://foo.com/Library

3.1.4 Authorization

OAuth 2.0 for Traefik Gateway

The traefik gateway is used to serve the DTaaS. All the services provided as part of the application are secured at the traefik gateway. The
security is based on Traefik forward-auth.

An illustration of the docker containers used and the authorization setup is shown here.

(y
WebApp

| http://localhost !

or v
_ |
: https.//foo.com OAuth |
| traefik \] Webserver > v
forward-authJ | GitLab

! traefik

I [service1] [servicez] L service, |

I & I

docker

The traefik forward-auth can use any OAuth 2.0 provider, but within the DTaaS GitLab is used as authorization provider. The OAuth 2.0
web / server application authorization flow is utilized.

The following steps outline the configuration process:
1. Choose GitLab Server:

* OAuth 2.0 authorization must be set up on a GitLab server. An on-premise GitLab installation is preferrable to commercial https://
gitlab.com.

* The GitLab Omnibus Docker can be used for this purpose.

» The OAuth 2.0 application should be configured as an instance-wide authorization type. The options to generate client secret and trusted
application should be selected.

2. Determine Website Hostname:

Before setting up OAuth 2.0 on GitLab, the hostname for the website should be determined. A self-hosted GitLab instance is recommended,
which can be used in other parts of the DTaaS$ platform.

3. Determine Callback and Logout URLSs:

-125/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/thomseddon/traefik-forward-auth
https://gitlab.com
https://gitlab.com
https://docs.gitlab.com/ee/install/docker.html
https://docs.gitlab.com/ee/integration/oauth_provider.html#create-an-instance-wide-application

3.1.4 Authorization

For the web / server authorization flow to function correctly, two URLs are required: a callback URL and a logout URL.

* The callback URL informs the OAuth 2.0 provider of the page where signed-in users should be redirected. It represents the landing
homepage of the DTaaS$ platform. (either http://foo.com/_oauth/ or http://localhost/_oauth/)

* The logout URL is the URL for signout of gitlab and clear authorization within traefik-forward auth. (either http://foo.com/_oauth/logout
or http://localhost/_oauth/logout). The logout URL is to help users logout of traefik forward-auth. The logout URL should not be entered
into GitLab OAuth 2.0 application setup.

4. Create OAuth 2.0 Application:
OAuth 2.0 application setup on GitLab can be located at Edit Profile -> Application https://gitlab.foo.com/-/profile/applications.

During the creation of the OAuth 2.0 application on GitLab, the scope must be specified. The read_user scope should be selected.

User Settings > Applications

Applications

Add new application

Name

DTaaS Server Authorization

Redirect URI

http://foo.com/_oauth

Use one line per URI

Confidential

Enable only for confidential applications exclusively used by a trusted backend server that
can securely store the client secret. Do not enable for native-mobile, single-page, or other
JavaScript applications because they cannot keep the client secret confidential.

Scopes

() api
Grants complete read/write access to the API, including all groups and projects, the
container registry, and the package registry.

() read_api

Grants read access to the API, including all groups and projects, the container registry, and
the package registry.

read_user
Grants read-only access to the authenticated user's profile through the /user APl endpoint,
which includes username, public email, and full name. Also grants access to read-only API

5. Copy Application Credentials:
After successfully creating the OAuth 2.0 application, GitLab generates an application ID and client secret.

Both these values are long strings of HEX values that are required for the configuration files.

-126/249 - Copyright © 2022 - 2026 The INTO-CPS Association

http://foo.com/_oauth/
http://localhost/_oauth/
http://foo.com/_oauth/logout
http://localhost/_oauth/logout
https://gitlab.foo.com/-/profile/applications

3.1.4 Authorization

User Settings > Applications > DTaa$S Server Authorization

@ The application was created successfully. X

‘ Q Search page

Application: DTaaS Server Authorization

Application ID €27516a0e515dfd1bl61 | [3

Secret ©® 3 Renew secret
This is the only time the secret is accessible. Copy the secret and store it securely.

Callback URL http://foo.com/_oauth

Confidential Yes

Scopes « read_user (Read the authenticated user's personal information)

Continue Edit

6. Checklist: Required Information from OAuth 2.0 Application:

The following information is required from the OAuth 2.0 application registered on GitLab:

GitLab Variable Variable Name in .env of docker Default Value
Name compose file
OAuth 2.0 Provider OAUTH_URL https://gitlab.foo.com/
Application ID OAUTH_CLIENT_ID XX
Application Secret OAUTH_CLIENT_SECRET XX
Callback URL (to be directly entered in GitLab OAuth 2.0
registration)
Forward-auth secret OAUTH_SECRET random-secret-string (password for forward-auth, can be

changed to your preferred string)

Scopes read_user

DEVELOPMENT ENVIRONMENT

The development environment and server installation scenarios requires traefik forward-auth.

CONFIGURE AUTHORIZATION RULES FOR TRAEFIK FORWARD-AUTH

The Traefik forward-auth microservices requires configuration rules to manage authorization for different URL paths. The conf.server file
can be used to configure the specific rules. There are broadly three kinds of URLs:

Public Path Without Authorization
To setup a public page, an example is shown below.

1 rule.noauth.action=al low
2 rule.noauth.rule=Path(" /public")

Here, 'moauth'’ is the rule name, and should be changed to suit rule use. Rule names should be unique for each rule. The 'action’ property is
set to "allow" to make the resource public. The 'rule' property defines the path/route to reach the resource.

-127/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.foo.com/

3.1.4 Authorization

Common to All Users
To setup a common page that requires GitLab OAuth 2.0, but is available to all users of the GitLab instance:

1 rule.all.action=auth
2 rule.all.rule=Path("/common")

The 'action’ property is set to "auth”, to enable GitLab OAuth 2.0 before the resource can be accessed.

Selective Access
Selective Access refers to the scenario of allowing access to a URL path for a few users. To setup selective access to a page:

1 rule.onlyul.action=auth
2 rule.onlyul.rule=Path(" /userl")
3 rule.onlyul.whitelist = userl@localhost

The 'whitelist' property of a rule defines a comma separated list of email IDs that are allowed to access the resource. While signing in users
can sign in with either their username or email ID as usual, but the email ID corresponding to the account should be included in the
whitelist.

This restricts access of the resource, allowing only users mentioned in the whitelist.

USER MANAGEMENT
DTaa$ provides an easy way to add and remove additional users from your DTaaS$ instance.

All such user management can be done via the DTaa$S CLI

LIMITATION

The rules in _conf._file are not dynamically loaded into the traefik-forward-auth microservice. Any change in the conf file requires restart of
traefik-forward-auth for the changes to take effect. All the existing user sessions get invalidated when the traefik-forward-auth* restarts.

Use a simple command on the terminal.
* For a local instance:

1 docker compose -f compose. local.yml --env-file .env up \
2 -d --force-recreate traefik-forward-auth

* For a server instance running in HTTP mode:

1 docker compose -f compose.server.yml --env-file .env.server up -d \
2 --force-recreate traefik-forward-auth

* For a server instance running in HTTPS mode:

1 docker compose -f compose.server.secure.yml --env-file .env.server up -d \
2 --force-recreate traefik-forward-auth

-128/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.5 Configuration

3.1.5 Configuration
Configure Client Website
This page describes the various configuration options for the React website.

1 if (typeof window !== 'undefined') {

2 window.env = {

3 REACT_APP_ENVIRONMENT: "prod | dev | local | test",

4 REACT_APP_URL: "URL for the gateway",

5 REACT_APP_URL_BASENAME: "Base URL for the client website"(optional, can be null),
6 REACT_APP_URL_DTLINK: "Endpoint for the Digital Twin",

7 REACT_APP_URL_LIBLINK: "Endpoint for the Library Assets",

8 REACT_APP_WORKBENCHLINK_VNCDESKTOP: "Endpoint for the VNC Desktop Link",

9 REACT_APP_WORKBENCHLINK_VSCODE: "Endpoint for the VS Code Llink",

10 REACT_APP_WORKBENCHLINK_JUPYTERLAB: "Endpoint for the Jupyter Lab link",

11 REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK :

12 "Endpoint for the Jupyter Notebook Link",

13 REACT_APP_WORKBENCHLINK_LIBRARY_PREVIEW: 'Endpoint for the Library page preview',

14 REACT_APP_WORKBENCHLINK_DT_PREVIEW: "Endpoint for the Digital Twins page preview",

15 REACT_APP_CLIENT_ID: 'AppID genereated by the gitlab OAuth 2.0 provider',

16 REACT_APP_AUTH_AUTHORITY: 'URL of the private gitlab instance',

17 REACT_APP_REDIRECT_URI: 'URL of the homepage for the logged in users of the website',

18 REACT_APP_LOGOUT_REDIRECT_URI: 'URL of the homepage for the anonymous users of the website',
19 REACT_APP_GITLAB_SCOPES: 'OAuth 2.0 scopes. These should match with the scopes set in gitlab OAuth 2.0 provider',
20 IH

21 b

22

23 // Example values with no base URL. Trailing and ending slashes are optional.
24 if (typeof window !== 'undefined') {

25 window.env = {

2 REACT_APP_ENVIRONMENT: 'prod’,

27 REACT_APP_URL: 'https://foo.com/",

28 REACT_APP_URL_BASENAME: '',

29 REACT_APP_URL_DTLINK: '/lab',

30 REACT_APP_URL_LIBLINK: '',

31 REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
32 REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',

33 REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',

34 REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: '',

35 REACT_APP_WORKBENCHLINK_LIBRARY_PREVIEW: '/preview/Llibrary',

36 REACT_APP_WORKBENCHLINK_DT_PREVIEW: '/preview/digitaltwins',

37

38 REACT_APP_CLIENT_ID: '1be55736756190b3ace4c2c4fb19bde386d1dcc748d20b47ea8cfh5935b8446¢",
39 REACT_APP_AUTH_AUTHORITY: 'https://gitlab.foo.com/",

40 REACT_APP_REDIRECT_URI: 'https://foo.com/Library',

4 REACT_APP_LOGOUT_REDIRECT_URT: 'https://foo.com/',

42 REACT_APP_GITLAB_SCOPES: ‘'openid profile read_user read_repository api',
43 b3

4 L

45

46

47 // Example values with "bar" as basename URL.
48 //Trailing and ending slashes are optional.
49 if (typeof window !== 'undefined') {

50 window.env = {

51 REACT_APP_ENVIRONMENT: "dev",

52 REACT_APP_URL: 'http://localhost:4000/",

53 REACT_APP_URL_BASENAME: 'bar',

54 REACT_APP_URL_DTLINK: '/lab',

55 REACT_APP_URL_LIBLINK: "',

56 REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
57 REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',

58 REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',

59 REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: "',

60 REACT_APP_WORKBENCHLINK_LIBRARY_PREVIEW: '/preview/Library',

61 REACT_APP_WORKBENCHLINK_DT_PREVIEW: '/preview/digitaltwins',

62

63 REACT_APP_CLIENT_ID: '1be55736756190b3ace4c2c4fh19bde386d1dcc748d20b47ea8cfh5935b8446¢",
64 REACT_APP_AUTH_AUTHORITY: 'https://gitlab.foo.com/",

65 REACT_APP_REDIRECT_URI: 'http://localhost:4000/bar/Library',

66 REACT_APP_LOGOUT_REDIRECT_URI: 'http://localhost:4000/bar",

67 REACT_APP_GITLAB_SCOPES: 'openid profile read_user read_repository api',
68 IH

[

-129/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.5 Configuration

£+ Configure Library Microservice
The microservice requires configuration specified in YAML format. The template configuration file is:

1 port: '4001'
2 mode: 'local' or 'git'

3 local-path: '/home/Desktop/files’

4 log-Llevel: 'debug'

5 apollo-path: '/Llib' or "'

6 graphql-playground: 'false' or 'true'
7

8

#0nly needed if git mode

9 git-repos:

10 - <username>:

11 repo-url: '<git repo url>'
12

13 - <username>:

14 repo-url: '<git repo url>'

The local-path variable is the relative filepath to the location of the local directory which will be served to users by the Library
microservice.

The default values should be replaced with appropriate values for the deployment. This configuration should be saved as a YAML file, for
example as Libms.yanl .

OPERATION MODES

The mode indicates the backend storage for the files. There are two possible modes - local and git. The files available in the local-path are
served to users in local mode. In the git mode, the remote git repos are cloned and they are served to users as local files.

git mode

A fragment of the config for git mode is:

git-repos:

- userl:
repo-url: 'https://gitlab.com/dtaas/userl.git'

- user2:
repo-url: 'https://gitlab.com/dtaas/user2.git'

- common:
repo-url: 'https://gitlab.com/dtaas/common.git"

O~ U AW

Here, userl, user2 and common are the local directories into which the remote git repositories get cloned. The name of the repository need
not match with the local directory name. For example, the above configuration enables library microservice to clone https://gitlab.com/
dtaas/userl.git repository into userl directory. Any git server accessible over HTTP(S) protocol is supported. The .git suffix is optional.

The default values should be replaced with appropriate values for the deployment.

The libms looks for Libms.yanl file in the working directory from which it is run. If you want to run libms without explicitly specifying the
configuration file, run with -c <path-to-file>.

Further documentation on the use of library microservice is available on this page.

-130/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.6 Docker

Install DTaaS on localhost

3.1.6 Docker

The installation instructions provided in this document are suitable for running DTaaS on localhost. This installation is intended for single

users running DTaa$S on their own computers.

DESIGN

An illustration of the docker containers used and the authorization setup is shown here.

WebApp

"

| traefik

http://localhost

r—-—-pF--------

I /user1

|
| User

| | Workspace
-

7

|

I { docker

L — — — — —

|

&
|OAuth2 (5itLab

| PKCE https://gitlab.com

-

- The text starting with / at the beginning indicates the URL route at which a certain service is available. For example, the user

workspace is available at http://localhost/userl.

REQUIREMENTS

The installation requirements to run this docker version of the DTaaS are:

* docker desktop / docker CE v28.

 User account on GitLah

i

The frontend website requires authorization. The default authorization configuration works for https://gitlab.com. If you desire to use locally

hosted GitLab instance, please see the client docs.

-131/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

http://localhost/user1
https://gitlab.com
https://gitlab.com

3.1.6 Docker

DOWNLOAD PACKAGE

The software is available as a zip package. The package should be downloaded and unzipped. A new DTaaS-v0.8.0 folder is created. The
remaining installation instructions assume the use of a Windows/Linux/MacOS terminal in the DTaaS-v0.8.0 folder.

b

. The filepaths shown here follow POSIX convention. The installation procedures also work with Windows paths.

. The description below refers to filenames. All file paths mentioned below are relative to the top-level DTaaS directory.

CONFIGURATION

Docker Compose

The docker compose configuration is in deploy/docker/.env. local ; it is a sample file. It contains environment variables that are used by the
docker compose files. It can be updated to suit the local installation scenario. It contains the following environment variables.

All fields should be edited according to the specific case.

URL Path Example Value Explanation
DTAAS_DIR '/Users/username/DTaaS' Full path to the DTaaS directory. This is an absolute path with no trailing slash.
usernamel ‘userl’ The GitLab username

[£] Important points to note:

1. The path examples given here are for Linux OS. These paths can also be Windows OS compatible paths.
2. The client configuration file is located at deploy/config/client/env. local.js . Beyond this, modification of this file is not necessary.

Create User Workspace
The existing filesystem for installation is configured for userl. A new filesystem directory must be created for the selected user.
The following commands should be executed from the top-level directory of the DTaaS project.

1 cp -R files/userl files/username

where username is the selected username registered on GitLab.

RUN
The commands to start and stop the appliation are:

1 docker compose -f compose. local.yml --env-file .env.local up -d
2 docker compose -f compose.local.yml --env-file .env.local down

To restart only a specific container, for example client

1 docker compose -f compose.local.yml --env-file .env.local up \
2 -d --force-recreate client

USE
The application will be accessible at: http://localhost from a web browser. Sign in using a GitLab account.

All the functionality of DTaa$ should be available through the single page client.

LIMITATIONS

The library microservice is not included in the localhost installation scenario.

-132/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/releases/download/v0.8.0/DTaaS-v0.8.0.zip
https://gitlab.com
http://localhost
https://gitlab.com

3.1.6 Docker

REFERENCES

Image sources: Traefik logo, ml-workspace, reactjs, GitLab

-133/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://krify.co/about-reactjs/
https://gitlab.com

Install DTaa$S on localhost with GitLab Integration

This installation is suitable for single users intending to use DTaa$S on their own computers.

3.1.6 Docker

The installation instructions provided in this document are appropriate for running the DTaaS on localhost served over HTTPS
connection. The intention is to integrate GitLab into DTaaS so that both are running on localhost.

If GitLab running on localhost is not required, the simpler localhost setup should be used.

DESIGN

An illustration of the docker containers used and the authorization setup is presented here.

© g
WebApp https://localhost
e

| OAuth2

| traefik | Webserver

| . forward-auth |

I treefik |

| |

I Juser1 / I

| |

| 5 Gentl— 5

| Workspace+ (OAuth2 GitLab

I) | PKCE https://gitlab.com
(& o

| | docker | https://localhost/gitlab
L — e e e e e e e e = = d

- The text starting with / at the beginning indicates the URL route at which a certain service is available. For example, user workspace is

available at https://localhost/user1.

REQUIREMENTS
The installation requirements to run this docker version of the DTaaS$ are:

* docker desktop / docker CLI with compose plugin
» mkeert

DOWNLOAD PACKAGE

The software is available as a zip package. The package should be downloaded and unzipped. A new DTaaS-v0.8.0 folder is created. The
remaining installation instructions assume the use of a Windows/Linux/MacOS terminal in the DTaaS-v0.8.0 folder.

[] file pathnames

1. The filepaths shown here follow POSIX convention. The installation procedures also work with Windows paths.

2. The description below refers to filenames. All the file paths mentioned below are relatively to the top-level DTaaS$ directory.

-134/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

https://localhost/user1
https://github.com/FiloSottile/mkcert
https://github.com/INTO-CPS-Association/DTaaS/releases/download/v0.8.0/DTaaS-v0.8.0.zip

3.1.6 Docker

CONFIGURE

Create User Workspace
The existing filesystem for installation is configured for userl. A new filesystem directory must be created for the selected user.
The following commands should be executed from the top-level directory of the DTaaS project.

1 cp -R files/userl files/username

where username is the selected username to be created (in next steps) on GitLab running at https://localhost/gitlab.

Obtain TLS / HTTPS Certificate
mkcert can be used to generate TLS certificates following this guide. The certificates should be generated for Llocalhost .

The names of the certificates must be fullchain.pen and privkey.pem. The fullchain.pen corresponds to public certificate and the privkey.pem
corresponds to private key.

Add TLS Certificates to Traefik
Copy the two certificate files into:

* deploy/docker/certs/localhost/fullchain.pem

* deploy/docker/certs/localhost/privkey.pem

Traefik will run with self-issued certificates if the above two certificates are either not found or found invalid.

Docker Compose

The docker compose configuration is in deploy/docker/.env. local ; it is a sample file. It contains environment variables that are used by the
docker compose files. It can be updated to suit your local installation scenario. It contains the following environment variables.

All fields should be edited according to the specific deployment case.

URL Path Example Value Explanation
DTAAS_DIR '/Users/username/DTaa$S' Full path to the DTaaS directory. This is an absolute path with no trailing slash.
usernamel ‘userl' Your GitLab username

[£] Important points to note:

1. The path examples given here are for Linux OS. These paths can be Windows OS compatible paths as well.

2. The client configuration file is located at deploy/config/client/env. local.js . Edit the URLs in this file by replacing http with https . Beyond this, it
is not necessary to modify this file.

RUN

Start DTaaS to Integrate GitLab
The commands to start and stop the appliation are:

1 docker compose -f compose. local.secure.yml --env-file .env.local up -d
2 docker compose -f compose. local.secure.yml --env-file .env.local down

To restart only a specific container; for example client

1 docker compose -f compose. local.secure.yml --env-file .env.local up \
2 -d --force-recreate client

Start GitLab

Use the instructions provided in GitLab integration to bring up GitLab on localhost and the GitLab service will be available at https://
localhost/gitlab

-135/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://localhost/gitlab
https://github.com/FiloSottile/mkcert
https://kifarunix.com/create-locally-trusted-ssl-certificates-with-mkcert-on-ubuntu-20-04/
https://localhost/gitlab
https://localhost/gitlab

3.1.6 Docker

Register OAuth 2.0 Application

The frontend website requires OAuth 2.0 application registration on the integrated GitLab. The details of OAuth 2.0 application for the
frontend website are available in client docs.

The default OAuth 2.0 client application provided in env. local.js functions correctly. However, when running an integrated GitLab
instance, this application needs to be created on GitLab running at https://localhost/gitlab.

https://localhost/Library should be used as the Callback URL (REACT_APP_REDIRECT_URI).

The GitLab OAuth 2.0 provider documentation provides further guidance on creating this OAuth 2.0 application.

Update Client Website Configuration
Replace the contents of deploy/config/client/env. local.js with the following.

1 if (typeof window !== 'undefined') {
2 window.env = {

3 REACT_APP_ENVIRONMENT: 'local’

4 REACT_APP_URL: 'https://localhost/",

5 REACT_APP_URL_BASENAME: "'

6 REACT_APP_URL_DTLINK: '/lab',

7 REACT_APP_URL_LIBLINK: ''

8 REACT_APP_WORKBENCHLINK_VNCDESKTOP: '/tools/vnc/?password=vncpassword',
9 REACT_APP_WORKBENCHLINK_VSCODE: '/tools/vscode/',

10 REACT_APP_WORKBENCHLINK_JUPYTERLAB: '/lab',

11 REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK: "'

12 REACT_APP_WORKBENCHLINK_LIBRARY_PREVIEW: '/preview/library',
13 REACT_APP_WORKBENCHLINK_DT_PREVIEW: '/preview/digitaltwins',
14

15 REACT_APP_CLIENT_ID: 'xxxxxx',

16 REACT_APP_AUTH_AUTHORITY: 'https://localhost/gitlab/',

17 REACT_APP_REDIRECT_URI: 'https://localhost/Library"',

18 REACT_APP_LOGOUT_REDIRECT_URI: 'https://localhost/',

19 REACT_APP_GITLAB_SCOPES: 'openid profile read_user read_repository api'
20 b

21 b

And then update OAuth 2.0 client application ID (REACT_APP_CLIENT_ID) with that of the newly registered OAuth 2.0 application.

Restart DTaaS Client Website
To update the client website configuration, run

1 docker compose -f compose. local.secure.yml --env-file .env.local up \
2 -d --force-recreate client

USE
The application will be accessible at: https://localhost from a web browser. Users can sign in using their https://localhost/gitlab account.

All the functionality of DTaaS should be available through the single page client.

LIMITATIONS

The library microservice is not included in the localhost installation scenario.

DOCKER HELP
The commands to start and stop the appliation are:

1 docker compose -f compose. local.secure.yml --env-file .env.local up -d
2 docker compose -f compose. local.secure.yml --env-file .env.local down

To restart only a specific container; for example client

1 docker compose -f compose. local.secure.yml --env-file .env.local up \
2 -d --force-recreate client

REFERENCES

Image sources: Traefik logo, ml-workspace, reactjs, GitLab

-136/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://localhost/gitlab
https://localhost/Library
https://docs.gitlab.com/ee/integration/oauth_provider.html
https://localhost
https://localhost/gitlab
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://krify.co/about-reactjs/
https://gitlab.com

3.1.6 Docker

Install DTaaS on a Production Server

The installation instructions provided in this document are ideal for hosting the DTaa$S as web application for multiple users.

DESIGN

An illustration of the docker containers used and the authorization setup is presented here.

€ f
WebApp
r

| http(s).//foo.com |

| OAuth?

1 ez W | Webserver
| forward-authJ '
| traefik

| ;user1 /user2 /libms / | OAuth?

PKCE
| User User [lerary] [client] l > v
| Workspace, Workspace) I GitLab

- ! https /gitlab.com

| * | OR

| docker | https://foo.com/gitlab
I\ |
S |

The text starting with / at the beginning indicates the URL route at which a certain service is available. For example, user workspace is
available at https://localhost/user1.

In the new application configuration, there are two OAuth 2.0 applications.

REQUIREMENTS

The installation requirements to run this docker version of the DTaaS are:

Docker with Compose Plugin

Docker installation is mandatory. Docker must be installed on the host computer.

Domain name

The DTaas software is a web application and is preferably hosted on a server with a domain name like foo.com. It is also possible to use an
IP address in place of domain name.

TLS / HTTPS Certificate (Optional)

HTTPS functionality can be added to the DTaa$S software installation. The required TLS certificates can be created through certbot.

-137/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://localhost/user1
https://www.docker.com/
https://certbot.eff.org/

3.1.6 Docker

OAuth 2.0 Provider

GitLab Instance - The DTaaS uses GitLab OAuth 2.0 authorization for user authorization. Either an on-premise instance of GitLab can be
used, or gitlab.com itself.

User Accounts
Create user accounts in a linked GitLab instance for all the users.

The default docker compose file contains two - user1 and user2. These names need to be changed to suitable usernames.

OAuth 2.0 Application Registration

The multi-user installation setup requires dedicated authorization setup for both frontend website and backend services. Both these
authorization requirements are satisfied using OAuth 2.0 protocol.

* The frontend website is a React single page application (SPA).
* The details of OAuth 2.0 application for the frontend website are in client docs.

» The OAuth 2.0 authorization for backend services is managed by Traefik forward-auth. The details of this authorization setup are in
server docs.

It is possible to use https://gitlab.com or a local installation of GitLab can be used for this purpose. Based on your selection of gitlab
instance, it is necessary to register these two OAuth 2.0 applications and link them to the intended DTaaS installation.

The GitLab OAuth 2.0 provider documentation provides further guidance on creating these two OAuth 2.0 applications.

DOWNLOAD PACKAGE

The software is available as a zip package. The package should be downloaded and unzipped. A new DTaaS-v0.8.0 folder is created. The
remaining installation instructions assume the use of a Windows/Linux/MacOS terminal in the DTaaS-v0.8.0 folder.

i

. The filepaths shown here follow Linux OS. The installation procedures also work with Windows OS.

. The description below refers to filenames. All the file paths mentioned below are relatively to the top-level DTaaS directory.

CONFIGURATION

Three following configuration files need to be updated.

Docker Compose

The docker compose configuration is in deploy/docker/.env.server . it is a sample file. It contains environment variables that are used by the
docker compose files. It can be updated to suit your local installation scenario. It contains the following environment variables.

-138/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://about.gitlab.com/install/
https://gitlab.com
https://github.com/thomseddon/traefik-forward-auth
https://gitlab.com
https://docs.gitlab.com/ee/integration/oauth_provider.html
https://github.com/INTO-CPS-Association/DTaaS/releases/download/v0.8.0/DTaaS-v0.8.0.zip

3.1.6 Docker

All fields should be edited according to the specific deployment case.

URL Path

DTAAS_DIR

SERVER_DNS

OAUTH_URL

OAUTH_CLIENT_ID

OAUTH_CLIENT_SECRET

OAUTH_SECRET

usernamel

username2

Example Value

'/Users/username/

DTaa$S'

foo.com

gitlab.foo.com

XX

XX

'random-secret-
string'

'user?l’

'‘user2'

Explanation

Full path to the DTaaS directory. This is an absolute path with no trailing
slash.

The server DNS, if you are deploying with a dedicated server. Remember not
use http(s) at the beginning of the DNS string

The URL of your GitLab instance. It can be gitlab.com if you are planning to
use it for authorization.

The ID of your server OAuth 2.0 application
The Secret of your server OAuth 2.0 application

Any private random string. This is a password you choose for local
installation.

The GitLab instance username of a user of DTaaS

The GitLab instance username of a user of DTaaS

b

Important points to note:

1. The path examples given here are for Linux OS. These paths can be Windows OS compatible paths as well.
2. The client configuration file is located at deploy/config/client/env.js .

3. The Server DNS can also be an IP address. However, for proper working it is neccessary to use the same convention (IP/DNS) in the client
configuration file as well.

Website Client

The frontend React website requires configuration which is specified in the client configuration file (deploy/config/client/env.js).

Further explanation on the client configuration is available in client config.

1
2

b

REACT_APP_CLIENT_ID: '1be55736756190b3ace4c2c4fb19bde386d1dcc748d20b47ea8cfb5935h8446¢",

There is a default OAuth 2.0 application registered on https://gitlab.com for client. The corresponding OAuth 2.0 application details are:

REACT_APP_AUTH_AUTHORITY: 'https://gitlab.com/",

This can be used for test purposes. Please use your own OAuth 2.0 application for secure production deployments.

Create User Workspace

The existing filesystem for installation is configured for files/userl. A new filesystem directory must be created for the selected user.

The following commands should be executed from the top-level directory of the DTaaS project.

1

cp -R files/userl files/username

where username is one of the selected usernames. This command needs to be repeated for all the selected users.

-139/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.com

3.1.6 Docker

Configure Authorization Rules for Backend Authorization

The Traefik forward-auth microservices requires configuration rules to manage authorization for different URL paths. The deploy/docker/
conf.server file can be used to configure the authorization for user workspaces.

rule.onlyul.action=auth
rule.onlyul.rule=Path(" /userl")
rule.onlyul.whitelist = userl@localhost

rule.onlyul.action=auth
rule.onlyul.rule=Path(" /user2")
rule.onlyul.whitelist = user2@localhost

~ o U A WwN

The usernames and email addresses should be changed to match the user accounts on the OAuth 2.0 provider (either https://gitlab.foo.com
or https://gitlab.com).

Caveat
The usernames in the deploy/docker/.env.server file need to match those in the deploy/docker/conf.server file.

Traefik routes are controlled by the deploy/docker/.env.server file. Authorization on these routes is controlled by the deploy/docker/conf.server
file. If a route is not specified in deploy/docker/conf.server file but an authorisation is requested by traefik for this unknown route, the default
behavior of traefik forward-auth kicks in. This default behavior is to enable endpoint being available to any signed in user.

If there are extra routes in deploy/docker/conf.server file but these are not in deploy/docker/.env.server file, such routes are not served by
traefik; it will give 404 server response.

ACCESS RIGHTS OVER FILES

ﬁrning

The default setting in docker compose file exposes all user files at http://foo.com/lib/files. All files of all the users are readable-writable by all
logged in users. The compose.server.yml / compose.server.secure.yml file needs to be updated to expose another directory like common assets
directory.

If you wish to reduce this scope to only common assets, please change,

Libms:
image: intocps/Llibms: latest
restart: unless-stopped
volumes:
- S{DTAAS_DIR}/deploy/config/Llibms.yaml:/dtaas/Libms/Libms.yaml
- ${DTAAS_DIR}/files/common: /dtaas/Libms/files

(SN T NIV R

The change in the last line. The ${DTAAS_DIR}/files got replaced by ${DTAAS_DIR}/files/common . With this change, only common files are
readable-writable by all logged in users.

Add TLS Certificates (Optional)
The application can be served on HTTPS connection for which TLS certificates are needed. The certificates need to be issued for foo.com or
*.foo.com. The names of the certificates must be fullchain.pem and privkey.pen . Copy these two certificate files into:
* certs/foo.com/fullchain.pem

* certs/foo.com/privkey.pemn
Traefik will run with self-issued certificates if the above two certificates are either not found or found invalid.

Remember to update dynamic/tls.ynl with correct path matching your DNS name. For example, if your DNS name is www. foo.com, then copy
the TLS certificates of www.foo.con to certs/ directory and update dynamic/tls.yml as follows.

tls:
certificates:

- certFile: /etc/traefik-certs/www.foo.com/fullchain.pem
keyFile: /etc/traefik-certs/www.foo.com/privkey.pem
stores:

- default

[T, I R R

-140/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.foo.com
https://gitlab.com
http://foo.com/lib/files

3.1.6 Docker

RUN

Over HTTP
This docker compose file serves application over HTTP.
The commands to start and stop the appliation are:

1 docker compose -f compose.server.yml --env-file .env.server up -d
2 docker compose -f compose.server.yml --env-file .env.server down

To restart only a specific container; for example client

1 docker compose -f compose.server.yml --env-file .env.server up \
2 -d --force-recreate client

Over HTTPS
This docker compose file serves application over HTTP.
The commands to start and stop the appliation are:

1 docker compose -f compose.server.secure.yml --env-file .env.server up -d
2 docker compose -f compose.server.secure.yml --env-file .env.server down

To restart only a specific container; for example client

1 docker compose -f compose.server.secure.yml --env-file .env.server up \
2 -d --force-recreate client

USE

The application will be accessible at: from a web browser. Users can sign in using accounts linked to either gitlab.com or the local GitLab
instance.

All the functionality of DTaaS should be available to users through the single page client.

Users may need to click Sign in to GitLab on the Client page and authorize access to the displayed application.

Adding a new user

Please see the add new user to add new users.

REFERENCES

Image sources: Traefik logo, ml-workspace, reactjs, GitLab

-141/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://krify.co/about-reactjs/
https://gitlab.com

3.1.7 Vagrant

3.1.7 Vagrant
DTaaS Vagrant Box

This document provides instructions for creating a custom Operating System virtual disk for running the DTaaS$ platform. The virtual disk

is managed by vagrant. The purpose is two-fold:

* Provide cross-platform installation of the DTaa$ platform. Any operating system supporting the use of vagrant software utility can
support installation of the DTaa$ platform.

* Create a ready-to-use development environment for code contributors.

There are two scripts in this directory:

Script name Purpose Default
user.sh user installation
deve loper.sh developer installation X

If you are installing the DTaa$ for developers, the default installation caters to your needs. You can skip the next step and continue with

the creation of vagrant box.

If additional software installation is desired for developers, the Vagrantfile needs to be modified. The existing Vagrantfile has two lines:

config.vm.provision "shell", path: "user.sh"
2 #config.vm.provision "shell", path: "developer.sh"

-

Uncomment the second line to have more software components installed. If you are not a developer, no changes are required to the

Vagrantfile .
This vagrant box installed for users will have the following items:

1. docker v24.0
2. nodejs v20.10
3.yarn v1.22

4. npm v10.2

5. containers - ml-workspace-minimal v0.13, traefik v2.10, gitlab-ce v16.4, influxdb v2.7, grafana v10.1, rabbitmq v3-management, eclipse-

mosquitto (mqtt) v2, mongodb v7.0
This vagrant box installed for developers will have the following items additional items:
* docker-compose v2.20
» microk8s v1.27
* jupyterlab

* mkdocs

* container - telegraf v1.28

At the end of installation, the software stack created in vagrant box can be visualised as shown in the following figure.

-142/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.7 Vagrant

vagrant box

| soopyw ‘qepaiAdnl(
_ wdu ‘uteA ‘slepou
: S =
| gaqobuon
_ - J
_ Jjelbalo) ®
A) 3 &
s a o e
| o)inbsow - =
o w
| (- & >
bwjigqe) 2
| L) 5 (@)
‘ \ o (-
| euejelb ° =
+ ©
> “)
_ gpxnjjul S Q.
| ¢ S S O
| 00-qe)b 3
_ 4 3
Jljael] >
I) T~
(. Emmm) NS
L -goedsyiom-jw |) e .W
sgyo.JoIW
_ , 8400l I y

Copyright © 2022 - 2026 The INTO-CPS Association

-143/249 -

3.1.7 Vagrant

The upcoming instructions will help with the creation of base vagrant box.

#create a key pair
ssh-keygen -b 4096 -t rsa -f vagrant -q -N ""

vagrant up
let the provisioning be complete

replace the vagrant ssh key-pair with personal one
vagrant ssh

©C NG A WN

10 # install the oh-my-zsh

11 sh -c "$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)"

12 # install plugins: history, autosuggestions,

13 git clone https://github.com/zsh-users/zsh-autosuggestions ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-autosuggestions

15 # inside ~/.zshrc, modify the following Line
16 plugins=(git zsh-autosuggestions history cp tmux)

18 # to replace the default vagrant ssh key-pair with
19 # the generated private key into authorized keys
20 cp /vagrant/vagrant.pub /home/vagrant/.ssh/authorized_keys

22 # exit vagrant guest machine and then
23 # copy own private key to vagrant private key location
24 cp vagrant .vagrant/machines/default/virtualbox/private_key

25

26 # check

27 vagrant ssh #should work
28

29 # exit vagrant guest machine and then
30 vagrant halt

31

32 vagrant package --base dtaas \

33 --info "info.json" --output dtaas.vagrant
34

35 # Add box to the vagrant cache in ~/.vagrant.d/boxes directory
36 vagrant box add --name dtaas ./dtaas.vagrant

38 # You can use this box in other vagrant boxes using
39 #config.vm.box = "dtaas"

REFERENCES

Image sources: Ubuntu logo

-144/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://logodix.com/linux-ubuntu

3.1.7 Vagrant

DTaaS on Single Vagrant Machine
These are installation instructions for running DTaa$ platform inside one Vagrant Virtual Machine. The setup requires a machine that can
allocate 16GB RAM, 8 vCPUs and 50GB Hard Disk space to the vagrant box.

CREATE BASE VAGRANT BOX

Create the dtaas Vagrant box. An SSH key pair - vagrant and vagrant.pub - will have been created. The vagrant file is the private SSH key
and is needed for the next steps. The vagrant SSH private key should be copied into the current directory (deploy/vagrant/single-machine).
This key is useful for logging into the vagrant machines created for two-machine deployment.

TARGET INSTALLATION SETUP

The goal is to use the dtaas Vagrant box to install the DTaa$S platform on one single vagrant machine. A graphical illustration of a
successful installation is presented here.

dtaas vagrant base box

(
|
J

Operating System

| | — | p— — — g— I
: |
| S a8 I
lelelglEl=|E|E|E
| : sl2lzlzl&=(2]|
2 Sl2(2(5)|8|® A
I 2 == S =N | = | I 5 5 E|
I|E gle|
B =] =2
i Sl | =N
| docker + docker-compose !
: |
: |
: |
: |
: |

http(s)://foo.com
~ .. OAuth2
traefik Webserver
= = forward-auth
— w treofik) "
User Workspace | OAuth2
(_*e per user) 1
uib MS][Website el
—et — - GitLab
http(s)://gitlab.foo.com

-
&]
| docker

“3 Operating System
ubuntuy

|
|
|
|
|
|
|
|
PKCE (V) :
|
|
|
|
|
|
|
|

-145/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.7 Vagrant

There are many unused software packages/docker containers within the dtaas base box. The used packages/docker containers are
highlighed in blue color.

b

The illustration shows hosting of GitLab on the same vagrant machine with http(s):/gitlab.foo.com The integrated GitLab setup is documented
on this page.

CONFIGURE SERVER SETTINGS
A dummy foo.com URL has been used for illustration. This should be changed to the actual unique website URL.
The following steps should be performed to make this installation work in the local environment.
Update the Vagrantfile. The fields to update are:

1. Hostname (node.vm.hostname = "foo.com")

2. MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC address.
Otherwise, you can leave this field unchanged.

3. Other adjustments are optional.

INSTALLATION STEPS
Execute the following commands from terminal

1 vagrant up
2 vagrant ssh

Set a cronjob inside the vagrant virtual machine to remote the conflicting default route. Download the route script and run the following
command.

1 sudo bash route.sh

Please follow the instructions of regular server installation setup to complete the installation.

REFERENCES

Image sources: Ubuntu logo, Traefik logo, ml-workspace, nodejs, reactjs, nestjs

-146/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://logodix.com/linux-ubuntu
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://www.metachris.com/2017/01/how-to-install-nodejs-7-on-ubuntu-and-centos/
https://krify.co/about-reactjs/
https://camunda.com/blog/2019/10/nestjs-tx-email/

3.1.7 Vagrant

DTaaS on Two Vagrant Machines

These are installation instructions for running the DTaa$ platform in two Vagrant virtual machines (VMs). In this setup, all user
workspaces are run on serverl while all platform services are run on server2.

The setup requires two server VMs with the following hardware configuration:
serverl: 16GB RAM, 8 x64 vCPUs and 50GB Hard Disk space
server2: 6GB RAM, 3 x64 vCPUs and 50GB Hard Disk space

Under the default configuration, two user workspaces are provisioned on serverl. The default installation setup also installs InfluxDB,
Grafana, RabbitMQ and MQTT services on server2. If you would like to install more services, you can create shell scripts to install the
same on server2.

CREATE BASE VAGRANT BOX
Create the dtaas Vagrant box. An SSH key pair - vagrant and vagrant.pub - will have been created. The vagrant file is the private SSH key

and is needed for the next steps. The vagrant SSH private key should be copied into the current directory (deploy/vagrant/two-machine). This
key is useful for logging into the vagrant machines created for two-machine deployment.

TARGET INSTALLATION SETUP

The goal is to use this dtaas vagrant box to install the DTaaS platform on serverl and the default platform services on server2. Both
servers are vagrant machines.

dtaas vagrant base box

| N NN TN NN\ TN T |
| |
m |

| slallellgll2l=2E(E],
' 3 E E=I | = | = | =00 | = | I =

0 @ =122 ==
'€ SIEIS|E]IE=|&g|ls|E]!
| g = = || E = = _%' |
' E 1% |
' 3| 8 % ! used in server
| S (=N ’ 1 ‘
' i docker + docker-compose : [used in server; J
I‘_J)

s ® N
[ofAN . !
| =od Operating System I
| ubuntu |
L\ J

There are many unused software packages/docker containers within the dtaas base box. The used packages/docker containers are
highlighted in blue and red color.

A graphical illustration of a successful installation is presented here.

-147/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.7 Vagrant

fe

http(s)://services.foo.com htip(s)-//foo.com
_______________ .
|
_____________ | , .. OAuth2 :
!) ' | traefik Webserver |
' 5 : | forward-auth |
[34] . : .
A=([g(l2]|8]|8] | treofik |
o =2 |
B || 8 3 é £ ! Use'emégrrkjgef":;e ! 1 OAuth2 :
[(0] 15 PKCE :
g @ z | | W (Lo s | (wepsie | —=— W
s — G ab
2 , | | http(s)://gitlab.foo.com |
\ |
@ | |
| docker)| [docker |
L] o3 . [: 42 . |
| | wime Operating System | | o Operating System |
J |
[I |
‘o | 1 |
server, server;
(vagrant box live) (vagrant box live)

In this case, both the vagrant boxes are spawed on one server using two vagrant configuration files, namely boxes.json and Vagrandtfile.

b

The illustration shows hosting of GitLab on the same vagrant machine with http(s)./gitlab.foo.com The GitLab setup is outside the scope this
installation guide. Please refer to GitLab docker install for GitLab installation.

CONFIGURE SERVER SETTINGS

[£] A dummy foo.con and services.foo.con URLs have been used for illustration. These should be changed to the actual unique website
URLs.

The first step is to define the network identity of the two VMs. For this, the server name, hostname and MAC address are required. The
hostname is the network URL at which the server can be accessed on the web. The following steps should be performed to make this work
in the local environment.

Update the boxes.json. There are entries one for each server. The fields to update are:

. name - name of serverl ("name" = "dtaas-two")
. hostname - hostname of server1 ("name" = "foo.com")

. MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC address.
Otherwise, you can leave this field unchanged.

. name - name of server2 ("name" = "services"
. hostname - hostname of server2 ("name" = "services.foo.com")

. MAC address (:mac => "xxxxxxxx"). This change is required if you have a DHCP server assigning domain names based on MAC address.
Otherwise, you can leave this field unchanged.

. Other adjustments are optional.

INSTALLATION STEPS

The installation instructions are given separately for each vagrant machine.

-148/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/ee/install/docker.html

3.1.7 Vagrant

Launch DTaaS Platform Default Services
Follow the installation guide for services to install the DTaa$ platform services.

After the services are up and running, you can see the following services active within server2 (services.foo.com).

service external url

InfluxDB database services.foo.com
Grafana visualization service services.foo.com:3000
MQTT Broker services.foo.com:1883
RabbitMQ Broker services.foo.com:5672
RabbitMQ Broker management website services.foo.com:15672
MongoDB database services.foo.com:27017

Install DTaaS Platform
Execute the following commands from terminal

1 vagrant up
2 vagrant ssh

Set a cronjob inside the vagrant virtual machine to remote the conflicting default route. Download the route script and run the following
command.

1 sudo bash route.sh

Please follow the instructions of regular server installation setup to complete the installation.

REFERENCES

Image sources: Ubuntu logo, Traefik logo, ml-workspace, nodejs, reactjs, nestjs

-149/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://logodix.com/linux-ubuntu
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://www.metachris.com/2017/01/how-to-install-nodejs-7-on-ubuntu-and-centos/
https://krify.co/about-reactjs/
https://camunda.com/blog/2019/10/nestjs-tx-email/

3.1.8 Platform Services

3.1.8 Platform Services
DTaaS Services CLI

A command-line tool for managing DTaaS platform services including MongoDB, InfluxDB, RabbitMQ, and Grafana.

 The CLI does not install ThingsBoard and PostgreSQL services. See the commands in manual install page for installing these two
services.

FEATURES

* Project Initialization: Generate project structure with config and data directories
» Automated Setup: One command setup of TLS certificates and permissions
* Service Management: Start, stop, and check status of all services
» User Management: Easy creation of user accounts in InfluxDB and RabbitMQ
* Cross platform: Works on Linux, macOS, and Windows
* Configuration-driven: Reads settings from config/services.env
INSTALLATION

Prerequisites

* Python 3.10 or higher
* Docker

» TLS certificates

Install from Wheel Package
Run the following commands from a virtual environment. Install the standalone wheel package using pip:

1 cd deploy/services/cli
2 pip install dtaas_services-0.1.0-py3-none-any.whl

This installs the dtaas-services command.
To verify the installation:

1 dtaas-services --help

QUICK START
1. Navigate to where you want to set up the services and generate the project structure:

1 dtaas-services generate-project

This creates: * config/ directory with configuration templates * data/ directory for service data * compose.services.secure.ynl for Docker
Compose

1. Update config/services.env with your environment values:

2. SERVICES_UID - User ID for service file ownership

3. SERVICES_GID - Group ID for service file ownership

4. SERVER_DNS - Your server hostname

5. Port numbers for each service

6. Update config/credentials.csv with user accounts (format: username,password)

-150/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.8 Platform Services

USAGE

Service Setup
After generating the project and configuring your settings:

1 dtaas-services setup

This command will:

* Copy TLS certificates to the correct locations
* Set up MongoDB certificates and permissions
* Set up InfluxDB certificates and permissions

* Set up RabbitMQ certificates and permissions
Permission Requirements:
This command requires access to the Docker daemon. You have two options:
1. Recommended: Add your user to the docker group (run once):

1 sudo usermod -aG docker SUSER
2 newgrp docker

Then run the command without sudo:

1 dtaas-services setup
1. Alternative: Run with sudo:
1 sudo dtaas-services setup

Service Management

Start all services:

1 dtaas-services start

Stop all services:

1 dtaas-services stop

Restart services:

1 dtaas-services restart

Check service status:

1 dtaas-services status

Remove services (with confirmation prompt):

1 dtaas-services remove

Remove services and their volumes:

1 dtaas-services remove --volumes

-151/249 - Copyright © 2022 - 2026 The INTO-CPS Association

User Account Management

1. Edit config/credentials.csv with user accounts (format: username,password)

2. Add users to InfluxDB and RabbitMQ:

1 dtaas-services user add

This will create user accounts with appropriate permissions in both services.
COMMANDS REFERENCE

dtaas-services generate-project
Generates the project structure with config, data directories, and compose file.
Options:
* --path - Directory to generate project structure (default: current directory)
Example:

1 dtaas-services generate-project --path /path/to/project

dtaas-services setup
Performs complete service setup including certificates and permissions.
Example:

1 dtaas-services setup

dtaas-services start
Starts all platform services using Docker Compose.
Options:

* -s, --services - Comma-separated list of specific services to start

Examples:
1 # Start all services
2 dtaas-services start
3
4 # Start specific services
5 dtaas-services start --services influxdb,rabbitmgq

dtaas-services stop
Stops all running platform services.
Options:

* -s, --services - Comma-separated list of specific services to stop

Examples:
1 # Stop all services
2 dtaas-services stop
3
4 # Stop specific services
5 dtaas-services stop -s mongodb,grafana

dtaas-services restart

Restarts platform services.

-152/249 -

3.1.8 Platform Services

Copyright © 2022 - 2026 The INTO-CPS Association

3.1.8 Platform Services

Options:

* -s, --services - Comma-separated list of specific services to restart

Examples:
1 # Restart all services
2 dtaas-services restart
3
4 # Restart specific services
5 dtaas-services restart --services influxdb

dtaas-services remove
Removes platform services and optionally their volumes. Prompts for confirmation before removal.

Note: When volumes are removed with --volumes , the data directories are automatically recreated empty to ensure successful
reinstallation of services.

Options:

* -s, --services - Comma-separated list of specific services to remove

* -v, --volumes - Remove volumes as well (data will be deleted but directories preserved)

Examples:
1 # Remove all services (with confirmation)
2 dtaas-services remove
3
4 # Remove specific services
5 dtaas-services remove --services influxdb,rabbitmg
6
7 # Remove all services and their volumes
8 dtaas-services remove --volumes
9

10 # Remove specific services with volumes
11 dtaas-services remove -s mongodb -v

dtaas-services status
Shows the current status of all services.
Options:

* -s, --services - Comma-separated list of specific services to check

Examples:
1 # Show status of all services
2 dtaas-services status
3
4 # Show status of specific services
5 dtaas-services status --services influxdb

dtaas-services user add
Adds user accounts to InfluxDB and RabbitMQ from config/credentials.csv .
Example:

1 dtaas-services user add

TROUBLESHOOTING

Permission Issues (Linux/macOS)
If you encounter permission errors when setting up services, ensure you run the setup command with appropriate privileges:

1 sudo -E env PATH="SPATH" dtaas-services setup

-153/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.8 Platform Services

Docker Connection Issues
Ensure Docker daemon is running:

1 docker ps

-154/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.8 Platform Services

Platform Services

It is recommended to install certain third-party software for use by digital twins running inside the DTaa$ platform. These services can
only be installed in secure (TLS) mode.

The following services can be installed:

* PostgresSQL: SQL database server

* ThingsBoard: is an Internet of Things (IoT) device management and data visualization platform
* Influx time-series database and dashboard service

* Grafana visualization and dashboard service

* RabbitMQ AMQP broker and its' management interface The MQTT plugin of this broker has been enabled. So, it can also be used as
MQTT broker.

* MongoDB NoSQL database server

PRE-REQUISITES

All these services run on raw TCP/UDP ports. Thus a direct network access to these services is required for both the DTs running inside the
DTaaS$ platform and the PT located outside the platform.

There are two possible choices here:

* Configure Traefik gateway to permit TCP/UDP traffic

* Bypass Traefik altogether
Unless you are an informed user of Traefik, we recommend bypassing traefik and provide raw TCP/UDP access to these services from the
Internet.

DIRECTORY AND FILE STRUCTURE

» config is used for storing the service configuration
* data is used by the services for storing data
« certs is used for storing the TLS certificates needed by the services.
* script contains scripts for installation of services and creation of user accounts
* log contains service logs for ThingsBoard service
» compose.services.secure.yml helps with installation of RabbitMQ, MongoDB, Grafana and InfluxDB services.
» compose.thingsboard.secure.yml helps with installation of PostgreSQL, and ThingsBoard services.
There are two additional directories, namely GitLab and runner. These directories are related to installation of integrated GitLab and its
runner. The instructions in this page are not related to GitLab and runner installation.
DOWNLOAD PACKAGE

The software is available as a zip package. The package should be downloaded and unzipped. A new DTaaS-v0.8.0 folder is created. The
remaining installation instructions assume the use of a Windows/Linux/MacOS terminal in the DTaaS-v0.8.0 folder.

The steps outlined here should be followed for installation. The services.foo.com website hostname is used for illustration. This should be
replaced with the appropriate server hostname. These steps assume that the DTaaS repository has been downloaded and navigation to the
deploy/services directory has been completed.

CREATE COMMON CONFIG

1. Copy config/services.env.template into config/services.env .

2. Update config/services.env with suitable values for your environment.

Take special care in setting strong passwords.

-155/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/releases/download/v0.8.0/DTaaS-v0.8.0.zip

3.1.8 Platform Services

INSTALL POSTGRESQL AND THINGSBOARD

Configure
* Obtain the TLS certificates from LetsEncrypt and copy them.

1 cp -R /etc/letsencrypt/archive/services.foo.com certs/.
2 mv certs/services.foo.com/privkeyl.pem certs/services.foo.com/privkey.pem
3 mv certs/services.foo.com/fullchainl.pem certs/services.foo.com/fullchain.pem

* Adjust permissions of certificates for PostgreSQL user in docker container.

cp certs/services.foo.com/privkey.pem \
certs/services.foo.com/postgres.key

cp certs/services.foo.com/fullchain.pem \
certs/services.foo.com/postgres.crt

chown 999:999 certs/services.foo.com/postgres.key \
certs/services.foo.com/postgres.crt

chmod 600 certs/services.foo.com/postgres.key

chmod 644 certs/services.foo.com/postgres.crt

® NG A WN

* Adjust permissions of certificates for ThingsBoard user in docker container.

cp certs/services.foo.com/privkey.pem \
certs/services.foo.com/thingsboard-privkey.pem

cp certs/services.foo.com/fullchain.pem \
certs/services.foo.com/thingsboard-fullchain.pem

chown 799:799 certs/services.foo.com/thingsboard-*.pem

chmod 600 certs/services.foo.com/thingsboard-privkey.pem

chmod 644 certs/services.foo.com/thingsboard-fullchain.pem

~ o U A WwN

* Set required permissions for ThingsBoard data and log directories.

1 chown -R 799:799 data/thingsboard
2 chown -R 799:799 Llog/thingsboard

Install
* Start PostgreSQL and run ThingsBoard install.

docker compose -f compose.thingsboard.secure.yml \
--env-file config/services.env \
up -d postgres
docker compose -f compose.thingsboard.secure.yml \
--env-file config/services.env \
run --rm -e INSTALL_TB=true -e LOAD_DEMO=false thingsboard-ce

[T, I R R

Once ThingsBoard is installed, the service can be started.
* Start or stop services.

docker compose -f compose.thingsboard.secure.yml \
--env-file config/services.env up -d thingsboard-ce

docker compose -f compose.thingsboard.secure.yml \
--env-file config/services.env down thingsboard-ce

s wN e

Add New User Accounts for ThingsBoard

The password for the default ThingsBoard system admin should be changed as soon as possible. The following commands can be used to
change the password and add a new tenant to the ThingsBoard service.

chmod +x script/thingsboard.py
python3 -m venv .venv

source .venv/bin/activate

pip install requests

python3 script/thingsboard.py

(€ O

-156/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.1.8 Platform Services

Troubleshooting
If the PostgreSQL logs show errors like:

* ERROR: relation "ts_kv" does not exist

* ERROR: relation "ts_kv_latest" does not exist
this usually means that the ThingsBoard service started before the database schema was fully created.
To fix this:
1. Stop all services:

1 docker compose -f compose.thingsboard.secure.yml \
2 --env-file config/services.env down

1. Delete the data folders:

1 rm -rf data/thingsboard/*
2 rm -rf data/postgres/*
3 rm -rf Llog/thingsboard/*

1. Start PostgreSQL and run ThingsBoard install again:

docker compose -f compose.thingsboard.secure.yml \
--env-file config/services.env up -d postgres
docker compose -f compose.thingsboard.secure.yml \
--env-file config/services.env \
run --rm -e INSTALL_TB=true -e LOAD_DEMO=false thingsboard-ce

G W e

INSTALLATION STEPS FOR OTHER SERVICES

Please follow the steps outlined here for installation. script/service_setup.py, is provided to streamline the setup of TLS certificates and
permissions for MongoDB, InfluxDB, and RabbitMQ services.

The script has the following features:

* Automation: Automates all manual certificate and permission steps for MongoDB, InfluxDB, and RabbitMQ as described above.
* Cross-platform: Works on Linux, macOS, and Windows.
* Configuration-driven: Reads all required user IDs, group IDs, and hostnames from config/services.env .

Run Install Script
Install Python dependencies before running the script:

1 pip install -r script/requirements.txt

Run the installation script

1 cd deploy/services
2 sudo python3 script/service_setup.py

The script will:

» Combine and set permissions for MongoDB certificates.
* Copy and set permissions for InfluxDB and RabbitMQ certificates.
* Use the correct UID/GID values from config/services.env.

« Start the Docker Compose services automatically after setup.
If any required variable is missing, the script will exit with an error message.

This automation reduces manual errors and ensures your service containers have the correct certificate files and permissions for secure
operation.

-157/249 - Copyright © 2022 - 2026 The INTO-CPS Association

USE

3.1.8 Platform Services

After the installation is complete, you can see the following services active at the following ports / URLs.

service

RabbitMQ Broker

RabbitMQ Broker Management Website
MQTT Broker

Influx

PostgreSQL

MongoDB database

Grafana

ThingsBoard

external url

services.foo.com:8083

services.foo.com:8084

services.foo.com:8085

services.foo.com:8086

services.foo.com:5432

services.foo.com:8087

services.foo.com:8088

services.foo.com:8089

Please note that the TCP ports used by the services can be changed by updating the config/service.env file and rerunning the docker
commands.

The firewall and network access settings of corporate / cloud network need to be configured to allow external access to the services.
Otherwise the users of the DTaa$ platform will not be able to utilize these services from their user workspaces.

NEW USER ACCOUNTS

There are ready to use scripts for adding accounts in InfluxDB and RabbitMQ services.

Copy the user accounts template and add user account credentials.

1
2

cp config/credentials.csv.template config/credentials.csv

edit credentials.csv file

Use the following commands to add new users to InfluxDB service.

(S T T IR N

on host machine
docker cp script/influxdb.py influxdb:/influxdb.py

docker cp config/credentials.csv influxdb:/credentials.csv

docker exec -it influxdb bash
inside docker container
python3 infLuxdb.py

Use the following commands to add new users to RabbitMQ service.

[T, I NI R,

on host machine
docker cp script/rabbitmq.py rabbitmq:/rabbitmq.py

docker cp config/credentials.csv rabbitmq:/credentials.csv

docker exec -it rabbitmq bash
inside docker container
python3 rabbitmg.py

-158/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

3.2 Integrated Gitlab

3.2 Integrated Gitlab

3.2.1 Local GitLab Instance

This guide provides instructions for installing a dedicated local GitLab instance. This GitLab installation can be used as an OAuth 2.0
authorization provider and DevOps backend for the DTaaS platform.

Design
Two possible methods exist for installing GitLab alongside the DTaaS:

* At a dedicated domain name (e.g., gitlab.foo.com)

» At a URL path on an existing WWW server (e.g., foo.com/gitlab)

The first is a two-server installation setup where GitLab and DTaaS$ are installed on separate servers. An illustration of this setup is shown
below.

© ?
[@]
WebApp
https.//foo.com

https://gitlab.foo.com

: Server; | : Server, |

| |
| - | 1 oAuth? |
| —— P traefik | " Webserver |
| . forward-auth — 1 |
| traefik N |
| ! |
| Juseri /user2 /libms / | I |
| |

I I
| w User DT [Library] [Client —— > v
| orkspace, Workspace J IOAuth2 GitLab |
| | PKCE |

I I
| s ! &> |
I docker || docker I
| l S |

The text starting with / at the beginning indicates the URL route at which a certain service is available. For example, user workspace is
available at https://localhost/user1.

The above figure shows integration of the DTaaS with a GitLab instance hosted at separate hostname, for example at https://gitlab.foo.com.

The second installation setup involves installation of both the GitLab and the DTaa$ on the same server. An illustration of the integrated
single-server installation setup is shown below.

-159/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.com
https://localhost/user1
https://gitlab.foo.com

3.2.1 Local GitLab Instance

I

e
I I
I I
| - OAuth2 |
| traefik Webserver |
g forward-auth
| traofik |
I I
| fusert Juser2 /libms / fqitlab |
| EEY e Library | | Client }—) V |
| | Workspace, Workspace OAuth? GitLab |
I PKCE |
I I
I ’* I
| docker |

This figure shows integration of GitLab instance hosted along side the DTaaS. The integrated GitLab is hosted behind the Traefik proxy.
This guide illustrates the installation of GitLab at: foo.com/gitlab. However, the instructions and compose.gitlab.ynl can be adapted to install
GitLab at a dedicated domain name.

Download Package
The software is available as a zip package. The package should be downloaded and unzipped. A new DTaaS-v0.8.0 folder is created. The
remaining installation instructions assume the use of a Windows/Linux/MacOS terminal in the DTaaS-v0.8.0 folder.

Configure and Install
This directory contains files needed to set up the docker container containing the local GitLab instance.

1. ./data, ./config, ./logs are the directories that will contain data for the GitLab instance

2. compose.gitlab.yml and .env are the Docker compose and environment files to manage the containerized instance of GitLab

If the DTaaS platform and GitLab are to be hosted at https://foo.com, then the client config file (deploy/config/client/env.js) needs to use the
https://foo.com/gitlab as REACT_APP_AUTH_AUTHORITY . In addition, this hosting at https://foo.com also requires changes to config file (.env.server).

If the DTaaS$ platform and GitLab are to be hosted at https://localhost, then the client config file (deploy/config/client/env. local.js) needs to
use the https://localhost/gitlab as REACT_APP_AUTH_AUTHORITY . If the application and the integrated GitLab are to be hosted at https://localhost/
gitlab, then .env.server need not be modified.

-160/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/releases/download/v0.8.0/DTaaS-v0.8.0.zip
https://foo.com
https://foo.com/gitlab
https://foo.com
https://localhost
https://localhost/gitlab

3.2.1 Local GitLab Instance

Edit the .env file available in this directory to contain the following variables:

Variable Example Value Explanation
DTAAS_DIR '/Users/username/ Full path to the DTaaS directory. This is an absolute path with no trailing slash.
DTaaS'
SERVER_DNS either foo.con or The server DNS, if you are deploying with a dedicated server. Remember not use
localhost http(s) at the beginning of the DNS string.

NOTE: The DTaasS client uses the react-oidc-context node package, which incorrectly causes redirects to use the HTTPS URL scheme. This is a
known issue with the package, and forces us to use HTTPS for the DTaaS server. If you are hosting the DTaaS$ locally, your GitLab instance
should be available at https://localhost/gitlab. If you are hosting the DTaaS at https://foo.com, then you GitLab instance should be available
at https://foo.com/gitlab.

Run

NOTE: The GitLab instance operates with the dtaas-frontend network, which requires the DTaaS server to be running before you start it.
You may refer to secure installation scenarios for the same.

The commands to start and stop the instance are:

1 # (cd deploy/services/gitlab)
2 docker compose -f compose.gitlab.yml up -d
3 docker compose -f compose.gitlab.yml down

Each time you start the container, it may take a few minutes. You can monitor the progress with watch docker ps and check if the GitLab
container is healthy .

POST-INSTALL CONFIGURATION

The administrator username for GitLab is: root . The password for this user account will be available in: config/initial_root_password . Be
sure to save this password somewhere, as this file will be deleted after 24 hours from the first time you start the local instance.

Use

After running the container, your local GitLab instance will be available at either at https://foo.com/gitlab or at https://localhost/gitlab.

CREATE USERS

The newly installed GitLab only contains root user. More users need to be created for use with DTaaS. Please see the GitLab docs for
further help.

Pending Tasks

This document helps with installation of GitLab along side DTaa$ application. But the OAuth 2.0 integration between GitLab and DTaaS
will still be pending. Follow the integration guide and the runner setup guide to setup the GitLab integration.

-161/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/authts/react-oidc-context/issues/1288
https://localhost/gitlab
https://foo.com
https://foo.com/gitlab
https://foo.com/gitlab
https://localhost/gitlab
https://docs.gitlab.com/ee/user/profile/account/create_accounts.html

3.2.2 GitLab Integration Guide

3.2.2 GitLab Integration Guide

This guide provides instructions for integrating a local GitLab instance with a DTaaS server installation and integrating the OAuth 2.0
Authorization feature with the DTaaS$ installation. The installation of Gitlab should be completed before attempting the integration steps
described here.

After following this guide, the GitLab instance will be integrated as an OAuth 2.0 provider for both the DTaaS client application and Traefik
Forward Auth backend authorization.

-
Kote

The DTaaS client uses the react-oidc-context node package, which incorrectly causes authorization redirects to use the HTTPS URL scheme. This
is a known issue with the package, and forces us to use HTTPS for the DTaaS$ server. This means your server should be set up to use either
https://localhost or https://foo.com. This guide will henceforth use foo.com to represent either localhost or a custom domain.

Integration Steps

1. SET UP THE DTAAS SERVER OVER HTTPS

The existing guides should be followed to set up the DTaaS web application over HTTPS connection on either localhost (https://localhost) or
a custom domain (https://foo.com).

3
Kote

Steps related to configuring OAuth 2.0 application tokens at https://gitlab.com may be ignored. The initial installation will host the local GitLab
instance, on which the OAuth 2.0 application tokens will later be created.

2. SET UP THE GITLAB INSTANCE
The guide should be followed to set up a GitLab instance.

After this step, a functioning GitLab instance (at either https://localhost/gitlab or https://foo.com/gitlab) will be available, along with login
credentials for the root user.

3. CREATE USERS

The newly installed GitLab only contains a root user. The users specified in installation configuration files (.env.local / .env.server) must be
created in this integrated GitLab server.

4. CREATE OAUTH 2.0 TOKENS IN GITLAB

Log in as a non-root user and follow these guides to create OAuth 2.0 Application Tokens for the backend and client. Note that the backend
is not required for https://localhost installation.

After this step, credentials for the application tokens titled "DTaaS Server Authorization" and "DTaaS$ Client Authorization" will be available

for use in the next step.

5. USE VALID OAUTH 2.0 APPLICATION TOKENS
The OAuth 2.0 tokens generated on the GitLab instance can now be used to enable authorization.
If the DTaa$ platform is hosted at https://localhost, configure the following files:

1. DTaaS Client Authorization token in deploy/config/client/env.localjs.

2. deploy/docker/.env.local - Add localpath and username.

-162/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/authts/react-oidc-context/issues/1288
https://localhost
https://foo.com
https://localhost
https://foo.com
https://gitlab.com
https://localhost/gitlab
https://foo.com/gitlab
https://localhost
https://localhost

3.2.2 GitLab Integration Guide

If the DTaaS platform is hosted at https://foo.com, configure the following files:

1. DTaaS Client Authorization token in deploy/config/client/env.js.

2. deploy/docker/.env.server - Add localpath and username, OAuth 2.0 client ID and client secret from the DTaaS Server Authorization token.

Restart Services

LOCALHOST INSTALLATION
The updated OAuth 2.0 application configuration needs to be loaded into the client website service.

1 cd deploy/docker
2 docker compose -f compose. local.yml --env-file .env.local up \
3 -d --force-recreate client

PRODUCTION SERVER INSTALLATION
The updated OAuth 2.0 application configuration needs to be loaded into the client website and the forward-auth services.
The production server can be installed with either http or https option. If it is installed with http option, run the following commands.

1 cd deploy/docker

2 docker compose -f compose.server.yml --env-file .env.server up \
3 -d --force-recreate client

4 docker compose -f compose.server.yml --env-file .env.server up \
5 -d --force-recreate traefik-forward-auth

If the production server is installed with https option, run the following commands.

1 cd deploy/docker

2 docker compose -f compose.server.secure.yml --env-file .env.server up \
3 -d --force-recreate client

4 docker compose -f compose.server.secure.yml --env-file .env.server up \
5 -d --force-recreate traefik-forward-auth

Post Setup Usage
If the setup has been completed correctly:

1. A functioning path-prefixed GitLab instance will be available at https://foo.com/gitlab that can be used in a similar manner to https://
gitlab.com.

2. Data, configuration settings, and logs pertaining to the GitLab installation will be available on the DTaaS server within the directory: deploy/
services/gitlab.

3. Traefik Forward Auth will use the path-prefixed GitLab instance for authorization on the multi-user installation scenario (i.e., foo.com but not
localhost).

Federation of DTaaS Installations

It is possible to use a single GitLab to serve multiple instances of the DTaaS installations. Please see DTaaS and DevOps video for an
overview of

* Features in DTaaS v0.7 (Timestamps: 00:00 to 10:24)
* DTaa$S and DevOps (Timestamps: 10:25 to 16:04)

* Federation of DTaa$ (Timestamps: 16:05 till the end)

-163/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://foo.com
https://gitlab.com
https://gitlab.com
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20250502_DTaaS-and-DevOps.mp4

3.2.3 Gitlab Runner

3.2.3 Gitlab Runner
GitLab Runner Integration

This document outlines the steps needed to create a gitlab-runner that will be responsible for the execution of Digital Twins. Many such
runners can be installaed and linked with the integrated GitLab.

An illustration of the intended installation setup is shown below.

(y
WebApp
== === = e
| https://foo.com Production Server
|
| OAuth2
| traefik Webserver
X forward-auth
| treefik
|
\ Jusert /user2 /libms / /gitlab
|
N ﬁser W Lljser [Library][Client]—> V J—
| orkspace, orkspace; OAuth? GitLab remote

| server

| PKCE

[= '

docker I

There are two installation scenarios:

1. Localhost Installation - You are using the integrated runner locally with a GitLab instance hosted at https://localhost/gitlab .

2. Server Installation - You are using the integrated runner with a GitLab instance hosted on a production server. This server may be a remote
server and not necessarily your own, and may have TLS enabled with a self-signed certificate.

Following the steps below sets up the integrated runner which can be used to execute digital twins from the Digital Twins Preview Page.

PREREQUISITES

A GitLab Runner picks up CI/CD jobs by communicating with a GitLab instance. For an explanation of how to set up a GitLab instance that
integrates with a DTaaS platform, refer to our GitLab instance document and our GitLab integration guide.

The rest of this document assumes you have a running DTaa$ platform with a GitLab instance running.

RUNNER SCOPES

A GitLab Runner can be configured for three different scopes:

Runner Scope Description

Instance Runner Available to all groups and projects in a GitLab instance.
Group Runner Available to all projects and subgroups in a group.
Project Runner Associated with one specific project.

-164/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.2.3 Gitlab Runner

We suggest creating instance runners as they are the most straightforward, but any type will work. More about these three types can be
found on the official GitLab documentation page.

OBTAINING A REGISTRATION TOKEN

First, we will obtain the token necessary to register the runner for the GitLab instance. Open your GitLab instance (remote or local) and
depending on your choice of runner scope, follow the steps given below:

Runner Scope Steps

Instance Runner 1. On the Admin dashboard, navigate to CI/CD > Runners.
2. Select New instance runner.

Group Runner 1. On the DTaaS group page, navigate to Settings > CI/CD > Runners.

2. Ensure the Enable shared runners for this group option is enabled.
3. On the DTaa$ group page, navigate to Build > Runners.
4

. Select New group runner.

[uny

Project Runner . On the DTaas$ group page, select the project named after your GitLab username.
. Navigate to Settings > CI/CD > Runners.

. Select New project runner.

w N

For any scope you have chosen, you will be directed to a page to create a runner:

1. Under Platform, select the Linux operating system.
2. Under Tags, add a linux tag.

3. Select Create runner.

You should then see the following screen:

Register runner

GitLab Runner must be installed before you can register a runner. How do | install GitLab Runner?

Step 1
Copy and paste the following command into your command line to register the runner.
$ gitlab-runner register 3
--url https://foo.com/gitlab
--token xxx

@ The runner token xxx [?y displays only for a short time, and is stored in the config.toml after you register the runner. It will not be visible once the runner is
registered.

Step 2

Choose an executor when prompted by the command line. Executors run builds in different environments. Not sure which one to select? [

Step 3 (optional)

Manually verify that the runner is available to pick up jobs.

$ gitlab-runner run 3

This may not be needed if you manage your runner as a system or user service [J.

Go to runners page

Be sure to save the generated runner authentication token.

CONFIGURING THE RUNNER
Depending on your installation scenario, the runner setup reads certain configurations settings:

1. Localhost Installation - uses deploy/docker/.env. local

2. Server Installation - uses deploy/docker/.env.server

-165/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/ee/ci/runners/runners_scope.html

3.2.3 Gitlab Runner

These files are integral to running the DTaa$ platform, so it will be assumed that you have already configured these.

We need to register the runner with the GitLab instance so that they may communicate with each other. deploy/services/runner/runner-
config.toml has the following template:

1 [[runners]]
2 name = "dtaas-runner-1"

3 url = "https://foo.com/gitlab/" # Edit this
4 token = "xxx" # Edit this

5 executor = "docker"

6 [runners.docker]

7 tls_verify = false

8 image = "ruby:2.7"

9 privileged = false

10 disable_entrypoint_overwrite = false

11 oom_Kkill_disable = false

12 volumes = ["/cache"]

13 network_mode = "host" # Disable this in secure contexts

1. Set the url variable to the URL of your GitLab instance.
2. Set the token variable to the runner registration token you obtained earlier.

3. If you are following the server installation scenario, remove the line network_mode = "host" .

Alist of advanced configuration options is provided on the GitLab documentation page.

START THE GITLAB RUNNER

You may use the following commands to start and stop the gitlab-runner container respectively, depending on your installation scenario:

1. Go to the DTaaS home directory (DdTaas_DIR) and execute one of the following commands.

2. Localhost Installation

1 docker compose -f deploy/services/runner/compose.runner.local.yml \
2 --env-file deploy/docker/.env.local up -d
3 docker compose -f deploy/services/runner/compose.runner.local.yml \
4 --env-file deploy/docker/.env. local down

3. Server Installation

1 docker compose -f deploy/services/runner/compose.runner.server.yml \
2 --env-file deploy/docker/.env.server up -d
3 docker compose -f deploy/services/runner/compose.runner.server.yml \
4 --env-file deploy/docker/.env.server down

Once the container starts, the runner within it will run automatically. You can tell if the runner is up and running by navigating to the
page where you created the runner. For example, an Instance Runner would look like this:

-166/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/runner/configuration/advanced-configuration.html

3.2.3 Gitlab Runner

[[J AdminArea > Runners

Runners

_ .
New instance runner :

All 1 Instance 1 Group 0 Project 0

| ':D v | Search or filter results... ‘ Q ‘ 1 Created date v | l?\

Online Offline Stale

le¢ 0o O«

O Status () Runner Owner (?)

O @ Oniine #1 (xxx) 08 Instance Administrator

Version 17.5.3 - dtaas-instance

© Last contact: 10 minutes ago B xoxoowooox €00
B Created 11 minutes ago by R

linux

You will now have a GitLab runner ready to accept jobs for the GitLab instance.

PIPELINE TRIGGER TOKEN

The Digital Twins Preview Page uses the GitLab API which requires a Pipeline Trigger Token. Go to your project in the DTaa$ group and
navigate to Settings > CI/CD > Pipeline trigger tokens. Add a new token with any description of your choice.

Pipeline trigger tokens Collapse

Trigger a pipeline for a branch or tag by generating a trigger token and using it with an API call. The token impersonates a user's project access and permissions. Learn
more.

Active pipeline trigger tokens @& 0 Reveal values

Add new pipeline trigger token

Description

‘ Any description you want

Create pipeline trigger token Cancel

You can now use the Digital Twins Preview Page to manage and execute your digital twins.

-167/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/ee/api/pipeline_triggers.html

3.2.3 Gitlab Runner

Setting up GitLab Runners with Docker on Windows for DTaaS
This guide documents how to properly set up and configure GitLab runners with Docker on Windows for the DTaa$ platform.

This document outlines the steps needed to properly set up and configure GitLab runners on Windows. An illustration of the intended
installation setup is shown below.

(y
WebApp
F——— = — == — == - = - - - - -
| https://foo.com Production Server
|
| OAuth2
| traefik Webserver
. forward-auth
| traofik
|
I Jusert /user2 /libms / /gitlab
|
| o User [Library] [Client ——> N |
| orkspace, Workspace OAUth? GitLab remote
| PKCE I server

|
l

There are two installation scenarios:
STEP-BY-STEP SETUP PROCESS

1. Install GitLab Runner

Download and install GitLab Runner for Windows from GitLab's official download page.

Navigate to your download directory
cd C:\path\to\download\folder
\gitlab-runner.exe install

Start the service

1

2

3

4 # Run the GitLab Runner

5

6

7

8 .\gitlab-runner.exe start

2. Getting a token

To get your GitLab token first head to your page should look something like this https://dtaas-digitaltwin.com/gitlab/dtaas/USERNAME, then
do the following:

1. settings -> CI/CD -> Runners

2. Now press New Project Runner

3. Add tag Linux

4. Leave the rest as is, and press Create Runner

5. Now you get your token! SAVE IT!

You now have your runner token.

-168/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/runner/install/windows.html
https://dtaas-digitaltwin.com/gitlab/dtaas/USERNAME

3.2.3 Gitlab Runner

3. Register Your Runner for DTaaS

For the DTaaS project, you need to register your runner using the specific GitLab instance URL and token:

Register the runner for DTaaS
.\gitlab-runner.exe register --url "https://foo.com/gitlab" --token ""

When prompted, enter:

- Name: [Your machine name or any preferred name]
- Executor: docker

- Default Docker image: ruby:2.7

- Tags: Linux

This configuration is designed for the DTaa$ digital twins which require a Linux environment to run properly. The pipelines use shell

scripts with commands like chmod +x , which need a Linux-compatible environment.

4. Configure Your config.toml

The most important part is properly configuring your config.toml file, which is typically located at C:\Users\YourUsername\.gitlab-

runner\config.toml or in the directory where you downloaded and ran the gitlab-runner executable.

DTaaS Configuration for Windows Hosts

Here's the recommended configuration for running DTaa$ Digital Twins on Windows:

© oo NG AW

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

concurrent = 1
check_interval = 0
connection_max_age = "15m0s"
shutdown_timeout = 0

[session_server]
session_timeout = 1800

[[runners]]
name = "Some name"
url = "https://dtaas-digitaltwin.com/gitlab"
id=3
token = "YOUR_RUNNER_TOKEN"
token_obtained_at = 2025-03-17T19:50:25Z
token_expires_at = 0001-01-01T00:00:00Z
executor = "docker"
[runners.custom_build_dir]
enabled = false
[runners.cache]
MaxUp loadedArchiveSize = 0
[runners.cache.s3]
[runners.cache.gcs]
[runners.cache.azure]
[runners.feature_flags
FF_NETWORK_PER_BUILD = false
[runners.docker]
tls_verify = false
image = "ruby:2.7"
privileged = false
disable_entrypoint_overwrite = false
oom_Kkill_disable = false
disable_cache = false
volumes = ["/cache"]
shm_size = 0
network_mtu = 0
tags = ["Linux"]

6. Restart the Runner

After making these configuration changes, restart your runner:

2

.\gitlab-runner.exe stop
.\gitlab-runner.exe start

VERIFYING YOUR SETUP

Run a verification check to ensure your runner is properly configured:

1

\gitlab-runner.exe verify

-169/249 - Copyright © 2022 - 2026 The INTO-CPS Association

A successful verification will show something like:

1 Verifying runner... is valid runner=YourRunnerToken

UNDERSTANDING THE DTAAS PROJECT SETUP
The DTaa$ project uses a specific structure for running digital twins:

1. Digital twins are contained in the digital_twins directory

2. Each digital twin has lifecycle scripts (create, execute, terminate, clean)
3. The GitLab CI/CD pipeline triggers these scripts based on user actions
4. The scripts need a Linux environment to execute properly

COMMON ERRORS

When attempting to run GitLab CI/CD pipelines on Windows with Docker, you might encounter these errors:

1 ERROR: Failed to remove network for build
2 ERROR: Job failed: invalid volume specification: "c:\\cache"

These errors are typically caused by:

1. Incorrect Docker executor configuration
2. Windows-style path specification not being compatible with Docker
3. Mismatch between the runner's executor type and the pipeline requirements

CONCLUSION

3.2.3 Gitlab Runner

By following this guide, you should be able to properly set up GitLab runners with Docker on Windows for the DTaaS project and avoid the
common configuration errors. The most crucial aspects are using the Docker (Linux) executor and properly formatting the volume paths.

Remember that for the DTaaS digital twins, using the standard Docker executor is required, even when running on a Windows host, since

the scripts are designed to run in a Linux environment.

-170/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.3 DTaaS Command Line Interface

3.3 DTaaS Command Line Interface

The DTaaS Command Line Interface (CLI) is a command line tool for managing a DTaaS installation.

3.3.1 Prerequisite

The DTaa$ platform with base users and essential containers must be operational before the CLI can be utilized.

3.3.2 Installation

The CLI is available as a Python package that can be installed via pip.
It is recommended to install the CLI in a virtual environment.
The installation steps are as follows:

* Change the working folder:

1 cd <DTaaS-directory>/cli

« It is recommended to use a virtual environment. A virtual environment should be created and activated.

* To install the CLI:

1 pip install dtaas

3.3.3 Usage

-
Kote

The base DTaaS$ platform should be up and running before adding/deleting users with the CLL

-171/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.3.3 Usage

Configure
The CLI uses dtaas.toml as configuration file. A sample configuration file is given here.

This is the config for DTaaS CLI

name = "Digital Twin as a Service (DTaaS)"

version = "0.2.1"

owner = "The INTO-CPS-Association"

git-repo = "https://github.com/into-cps-association/DTaaS.git"

[common]

Server hostname either localhost or a valid hostname, ex: foo.com
10 server-dns = "localhost"

11 # absolute path to the DTaaS application directory

12 # Specify the directory of DTaaS installation

13 # Linux example

14 path = "/Users/username/DTaaS"

15 # Windows example

16 #path = "C:\\Users\\XXX\\DTaaS"

17 # Note: You have to either use / or \\ when specifying path, else you would get
18 # "Error while getting toml file: dtaas.toml, Invalid unicode value"

© N U A WN

19
20 [common. resources]
21 # Default resource limits applied when creating user workspace containers
22 # Keys:
23 # - cpus: integer count of virtual CPUs to allocate to the container
24 # - mem_Limit: memory limit string accepted by Docker (e.g. "4G", "512M")
25 # - pids_limit: maximum number of processes the container may create
26 # - shm_size: size for /dev/shm (shared memory), e.g. "512m"
27 #
#

28 Adjust these values to match your host capacity and tenancy policy.
29 cpus = 4

30 mem_Limit = "4G6"

31 pids_Limit = 4960

32 shm_size = "512m"

85

34 # Example: Increase memory and lower CPU for heavier-memory workloads
35 # cpus = 2

36 # mem_Limit = "8G6"

37

39 [users]

40 # matching user info must present in this config file
41 add = ["usernamel","username2", "username3"]

42 delete = ["username2", "username3"]

43

NOTES

* Edits to dtaas.toml affect new user containers created after the change.

* To apply updated limits to existing containers, recreate or restart the user container(s) (for example by removing and re-adding the user
workspace via the CLI or by restarting the container in Docker Compose).

* Use units (M, ¢) for memory and shared memory values.

Select Template
The cli uses YAML templates provided in this directory to create new user workspaces. The available templates are:

1. user:local.yml: localhost installation
2. User:serveryml: multi-user web application over HTTP

3. userserversecure.yml: multi-user web application over HTTPS

It should be noted that the cli is not capable of detecting the difference between HTTP and HTTPS modes of the web application. When
serving the web application over HTTPS, an additional step is required.

1 cp usenservensecure.ymL userAserver.yml

This will change the user template from insecure to secure.

-172/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.3.3 Usage

Add Users

To add new users using the CLI, the users.add list in dtaas.toml should be populated with the GitLab instance usernames of the users to be
added.

1 [users]
2 # matching user info must present in this config file
3 add = ["usernamel","username2", "username3"]

The working directory must be the cli directory.
Then execute:

1 dtaas admin user add

The command checks for the existence of files/<username> directory. If it does not exist, a new directory with correct file structure is
created. The directory, if it exists, must be owned by the user executing dtaas command on the host operating system. If the files do not
have the expected ownership rights, the command fails.

CAVEATS

This process brings up the containers, without the AuthMS authentication.

o Currently the email fields for each user in dtaas.toml are not in use, and are not necessary to complete. These emails must be configured
manually for each user in the deploy/docker/conf.server files and the traefik-forward-auth container must be restarted. This is
accomplished as follows:

* Navigate to the docker directory
1 cd <DTaaS>/deploy/docker

» Add three lines to the conf.server file

1 rule.onlyu3.action=auth
2 rule.onlyu3.rule=PathPrefix("/user3")
3 rule.onlyu3.whitelist = user3@emailservice.com

* Run the command for these changes to take effect:

1 docker compose -f compose.server.yml --env-file .env up \
2 -d --force-recreate traefik-forward-auth

The new users are now added to the DTaaS$ instance, with authorization enabled.

Delete Users

* To delete existing users, the users.delete list in dtaas.toml should be populated with the GitLab instance usernames of the users to be
deleted.

1 [users]
2 # matching user info must present in this config file
3 delete = ["usernamel","username2", "username3"]

» The working directory must be the cli directory.
Then execute:

1 dtaas admin user delete

* Remember to remove the rules for deleted users in conf.server.

-173/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.3.3 Usage

Additional Points to Remember

* The user add CLI will add and start a container for a new user. It can also start a container for an existing user if that container was
somehow stopped. It shows a Running status for existing user containers that are already up and running, it doesn't restart them.

* user add and user delete CLIs return an error if the add and delete lists in dtaas.toml are empty, respectively.

* '"is a special character. Currently, usernames which have ".'s in them cannot be added properly through the CLI. This is an active issue
that will be resolved in future releases.

-174/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.4 Independent Packages

3.4 Independent Packages

3.4.1 Independent Packages

The DTaa$ development team publishes reusable packages which are then put together to form the complete DTaa$S application.
The packages are published on github, npmjs, and docker hub repositories.

The packages on github are published more frequently but are not user tested. The packages on npmjs and docker hub are published at
least once per release. The regular users are encouraged to use the packages from npm and docker hub.

A brief explanation of the packages is given below.

Package Name Description Documentation for Availability

dtaas-web React web application Useful only for DevOps features. docker hub and github
The workspace features will not
be available in standalone

package.
libms Library microservice npm package npmjs and github
container image docker hub and github
runner REST API wrapper for npm package npmjs and github
multiple scripts/
programs
ml-workspace- User workspace not available docker hub. Please note that this
minimal (fork of ml- package is highly experimental
workspace) and only v0.15.0-b2 is usable now.

-175/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/orgs/INTO-CPS-Association/packages?repo_name=DTaaS
https://www.npmjs.com/org/into-cps-association
https://hub.docker.com/u/intocps
https://github.com/orgs/INTO-CPS-Association/packages?repo_name=DTaaS
https://www.npmjs.com/org/into-cps-association
https://hub.docker.com/u/intocps
https://hub.docker.com/r/intocps/dtaas-web
https://github.com/INTO-CPS-Association/DTaaS/pkgs/container/dtaas-web
https://www.npmjs.com/package/@into-cps-association/libms
https://github.com/INTO-CPS-Association/DTaaS/pkgs/npm/libms
https://hub.docker.com/r/intocps/libms
https://github.com/INTO-CPS-Association/DTaaS/pkgs/container/libms
https://www.npmjs.com/package/@into-cps-association/runner
https://github.com/INTO-CPS-Association/DTaaS/pkgs/npm/runner
https://github.com/ml-tooling/ml-workspace
https://github.com/ml-tooling/ml-workspace
https://hub.docker.com/r/intocps/ml-workspace-minimal/tags

3.4.2 Library Microservice

3.4.2 Library Microservice

Host Library Microservice
The lib microservice is a simplified file manager that serves files over GraphQL and HTTP API.
It has two features:

¢ Provide a listing of directory contents.

* Upload and download files

This document provides instructions for installing the npm package of the library microservice and running the same as a standalone
service.

SETUP THE FILE SYSTEM

Outside the DTaaS Platform

The package can be used independently of the DTaaS. In this use case, no specific file structure is required. Any valid file directory is
sufficient.

Inside the DTaaS Platform

The users of the DTaaS expect the following file system structure for their reusable assets.

User, User,
User, Commons User, Commons
Client
User, User, Commons
o]|) o o | el o o |)
orage

Models Functions | D Models l Models l

A skeleton file structure is available in the DTaa$ codebase. This can be copied to create a file system for users.

[3INSTALL
The npm package is available in Github packages registry and on npmjs. Prefer the package on npmjs over Github.

Set the registry and install the package with the one of the two following commands

npmjs
1 sudo npm install -g @into-cps-association/libms # requires no login
Github

1 # requires login
2 sudo npm config set @into-cps-association:registry https://npm.pkg.github.com

-176/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/files
https://github.com/orgs/INTO-CPS-Association/packages
https://www.npmjs.com/package/@into-cps-association/libms

3.4.2 Library Microservice

The github package registry asks for username and password. The username is your Github username and the password is your Github
personal access token. In order for the npm to download the package, your personal access token needs to have read:packages scope.

o USE
Display help.

SLibms -h
Usage: Libms [options]

The Lib microservice is a file server. It supports file transfer
over GraphQL and HTTP protocols.

Options:
-c, --config <file> provide the config file (default Libms.yaml)
-H, --http <file> enable the HTTP server with the specified config
-h, --help display help for Libms

S VWO U A WN

Both the options are not mandatory.

Please see configuration for explanation of configuration conventions. The config is saved Libms.yaml file by convention. If -c is not
specified The libms looks for Libms.yanl file in the working directory from which it is run. If you want to run libms without explicitly
specifying the configuration file, run

1 Slibms

To run libms with a custom config file,

1 Slibms -c FILE-PATH
2 S$libms --config FILE-PATH

If the environment file is named something other than Libms.yanl, for example as Libms-config.yaml, you can run

1 $Libms -c "config/Libms-config.yaml"

You can press Ctl+C to halt the application. If you wish to run the microservice in the background, use

1 Snohup Llibms [-c FILE-PATH] & disown

The 1lib microservice is now running and ready to serve files.

Protocol Support

The libms supports GraphQL protocol by default. This microservice can also serve files in a browser with files transferred over HTTP
protocol.

This option needs to be enabled with -H http.json flag. A sample http config provided here can be used.
1 $nohup Libms [-H http.json] & disown
The regular file upload and download options become available.
SERVICE ENDPOINTS
The GraphQL URL: localhost:PORT/Lib
The HTTP URL: localhost:PORT/Lib/files

The service API documentation is available on user page.

-177/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

3.4.2 Library Microservice

Host Library Microservice
The lib microservice is a simplified file manager that serves files over GraphQL and HTTP APIL
It has two features:

* Provide a listing of directory contents.

 Transfer a file to the user.

This document provides instructions for running a docker container to provide a standalone library microservice.
SETUP THE FILE SYSTEM

Outside the DTaaS Platform

The package can be used independently of the DTaaS. In this use case, no specific file structure is required. A valid file directory named
files is sufficient and should be placed in the directory from which compose. Lib.yml will be run.

Inside the DTaaS Platform

The users of DTaaS$ expect the following file system structure for their reusable assets.

User,
User, Commons
Client e =
—] w | [A:;;iﬂ o N
= & = &
LEe User, Commons

Software Tools and ' Software Tools and l Software Tools and '
Frameworks Digital Twins Frameworks Digital Twins. Frameworks Digital Twins

Data Data Data

Storage

A skeleton file structure is available in the DTaaS codebase. This can be copied to create a file system for users. The directory containing
the file structure should be named files and placed in the directory from which compose. Lib.yml will be run.

USE

Use the docker compose file to start the service.

1 # To bring up the container

2 docker compose -f compose.Llib.yml up -d

3 # To bring down the container

4 docker compose -f compose.Lib.yml down
SERVICE ENDPOINTS

The GraphQL URL: localhost:4001/Lib
The HTTP URL: localhost:4001/Llib/files

The service API documentation is available on user page.

-178/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/files

3.5 Guides

3.5 Guides

3.5.1 Install DTaa$S on localhost (GUI)

The installation instructions provided in this document are ideal for running the DTaa$ on localhost via a Graphical User Interface (GUI).
This installation is ideal for single users intending to use DTaa$ on their own computers.

Design

An illustration of the docker containers used and the authorization setup is shown here.

"

Requirements

WebApp

http://localhost

r—-—-F--------

| traefik |

I /user1 / I

| |

| Liser Client | S v

. | Workspace |OAuth2 (5itLab

.
| | PKCE https://gitlab.com
I |
| | Jdocker I
S

The installation requirements to run this docker version of the DTaaS$ are:

* docker desktop / docker CLI with compose plugin

* User account on gitlab.com

b

The frontend website requires authorization. The default authorization configuration works for gitlab.com. If you desire to use locally hosted
gitlab instance, please see the client docs.

-179/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.5.1 Install DTaa$ on localhost (GUI)

Download Package

The software is available as a zip package. The package should be downloaded and unzipped. A new DTaaS-v0.8.0 folder is created. The
remaining installation instructions assume the use of a Windows/Linux/MacOS terminal in the DTaaS-v0.8.0 folder.

In this guide we will assume the contents of the zip file have been extracted to the directory: /Users/username/DTaa$.

b

The path given here is for Linux OS. It can be Windows compatible as well, for example: C:\\DTaa$. Make sure to use this path and format in
place of /Users/username/DTaa$ in this guide.

Starting Portainer

The GUI used to run the application and docker containers will be provided by Portainer Community Edition. It is itself a Docker container
that will create a website at https://localhost:9443 , which will present a graphical interface for starting and stopping the application.

You may follow the official documentation for setting up a Portainer CE Server . Alternatively, open a terminal on your system (Terminal
on Linux / MacOS, Powershell on Windows, etc) and copy the following commands into it:

1 docker volume create portainer_data

2 docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always \
3 -v /var/run/docker.sock: /var/run/docker.sock \

4 -v portainer_data:/data portainer/portainer-ce:2.21.4

This will start the Portainer server on your system, which will host its dashboard at https://localhost:9443 . Follow the Initial Setup Guide to
set up an administrator account for Portainer on your system.

Portainer should now be set up on your system, and you can access the dashboard:

© Upgrade to Business Edition Environments

o
portainer.io Home &

@ commun EL

@& Home Latest News From Portainer

local

Dashboard
Templates & Environments Q Refresh
Stacks
Containers
v Clearall

Images

Networks
local {43

Volumes ' X Disconnect

Group: Unassigned ©

Events ® Connected
£ 3 stacks @ 10 containers Q0 Q 8 1 volume = 15 images {12 CPU & 8.3 GBRAM

Host
Items per page

Administration

User-related

Environment-related

Registries

Logs

Notifications

Settings

§ portainer.io Community Edition 2.21.4

b

The next time you wish to start the Portainer server, run docker start portainer .

-180/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/releases/download/v0.8.0/DTaaS-v0.8.0.zip
https://portainer.io
https://docs.portainer.io/start/install-ce/server/docker
https://docs.portainer.io/start/install-ce/server/setup

3.5.1 Install DTaa$ on localhost (GUI)

Configuration

CREATE USER WORKSPACE
The existing filesystem for installation is setup for user1. A new filesystem directory needs to be created for the selected user.

You may use your file explorer or an equivalent application to duplicate the files/userl directory and rename it as files/usernane where
username is the selected username registered on https://gitlab.com.

ALternatively, you may execute the following commands from the top-level directory of the DTaasS.

1 cp -R files/userl files/username

CREATING THE PORTAINER STACK

@ Upgrade to Business Edition Stacks

portainer.io Stacks list ©

COMMUN EC

£ Stacks + Addstack | @ :
local @ Namel Type Control Created Updated Ownership

O Compose Limited C 2024-10-29 17:43:22 - ¥ administrators
Dashboard

Templates Items per page 10 v
Stacks
Containers

= Images

Networks

Events

&
8 Volumes
o
@

Host

Administration

& User-related
Environment-related
Registries
Logs
Notifications

Settings

il portainer.io Community Edition 2.21.4

Portainer Stacks are equivalent to using docker compose commands to manage containers.

1. Navigate to the Stacks tab on the side panel, and click on the Add Stack button.
2. Name the Stack anything descriptive, for example: dtaas-localhost .

3. Select the Upload build method.

4. Upload the compose file located at deploy/docker/compose. Local.yml .

5. Select the option to load variables from a .env file, and upload the file deploy/docker/.env. local .

b

Sometimes the .env.local file does not show up in the file explorer. You may fix this by selecting the option to show All Files rather than those

with the extension .env.

-181/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.com

3.5.1 Install DTaa$ on localhost (GUI)

ET T DTAAS_DIR value ‘/Users/<Username>/DTaaS'

name usernamel

The .env.local file contains environment variables that are used by the compose file. Portainer allows you to modify them as shown in the
screenshot above, here is a summary:

URL Path Example Value Explanation
DTAAS_DIR '/Users/username/DTaa$S' Full path to the DTaaS directory. This is an absolute path with no trailing slash.
usernamel ‘userl' Your gitlab username

b

Important points to note:

1. The path examples given here are for Linux OS. These paths can be Windows OS compatible paths as well.

2. The client configuration file is located at deploy/config/client/env. local.js . If you are following the guide to use HTTPS on localhost, edit the URLs
in this file by replacing http with https .

Once you have configured the environment variables, click on the button Deploy the stack.

Use

The application will be accessible at: http://localhost from web browser. Sign in using your https://gitlab.com account.

All the functionality of DTaa$ should be available to you through the single page client now.

Limitations

The library microservice is not included in the localhost installation scenario.

References

Image sources: Traefik logo, ml-workspace, reactjs, gitlab

-182/249 - Copyright © 2022 - 2026 The INTO-CPS Association

http://localhost
https://gitlab.com
https://www.laub-home.de/wiki/Traefik_SSL_Reverse_Proxy_f-C3-BCr_Docker_Container
https://github.com/ml-tooling/ml-workspace
https://krify.co/about-reactjs/
https://gitlab.com

3.5.2 Check Client Configuration

3.5.2 Check Client Configuration

One of the common errors is the incorrect configuration of the react website. There is now a helpful checklist to verify the client
configuration. A correct configuration shows the following result.

« C o QO B ntips;//dtaas-digitaltwin.com/config/developer 67% $¥ ® LY @ 9 2 @ ® 6 O 5 =

The Digital Twin as a Service

Config verification

REACT_APP_ENVIRONMENT: prod

REACT_APP_URL: https://dtaas-digitaltwin.com/

REACT_APP_URL_BASENAME:

REACT_APP_URL_DTLINK: /lab

REACT_APP_URL_LIBLINK:

REACT_APP_WORKBENCHLINK_VNCDESKTOP: /tools/vnc/?password=vncpassword
REACT_APP_WORKBENCHLINK_VSCODE: /tools/vscode/
REACT_APP_WORKBENCHLINK_JUPYTERLAB: /lab
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK:
REACT_APP_WORKBENCHLINK_LIBRARY_PREVIEW: /preview/library
REACT_APP_WORKBENCHLINK_DT_PREVIEW: /preview/digitaltwins
REACT_APP_CLIENT_ID: 85€9f08631d90700c598106979009f1ecc1c3blaeb4eb2f8decb4e0d23a4ebfe
REACT_APP_AUTH_AUTHORITY: https://dtaas-digitaltwin.com/gitlab
REACT_APP_REDIRECT_URI: https://dtaas-digitaltwin.com/Library
REACT_APP_LOGOUT_REDIRECT_URI: https://dtaas-digitaltwin.com/
REACT_APP_GITLAB_SCOPES: openid profile read_user read_repository api

Q0000000000000

In case of incorrect client website URL, the following result will be shown.

&« C @ QO 8 ntips;//dtaas-digitaltwin.com/config/developer 67% $¥ ©® ¥ © 9 2 A @® g © & =

The Digital Twin as a Service

Config verification

REACT_APP_ENVIRONMENT: prod

REACT_APP_URL: https://dtaas-digitaltwin.co/

REACT_APP_URL_BASENAME:

REACT_APP_URL_DTLINK: /lab

REACT_APP_URL_LIBLINK:

REACT_APP_WORKBENCHLINK_VNCDESKTOP: /tools/vnc/?password=vncpassword
REACT_APP_WORKBENCHLINK_VSCODE: /tools/vscode/
REACT_APP_WORKBENCHLINK_JUPYTERLAB: /lab
REACT_APP_WORKBENCHLINK_JUPYTERNOTEBOOK:
REACT_APP_WORKBENCHLINK_LIBRARY_PREVIEW: /preview/library
REACT_APP_WORKBENCHLINK_DT_PREVIEW: /preview/digitaltwins
REACT_APP_CLIENT_ID: 85e9f08631d90700c598106979009f1ecc1c3b1aeb4eb2f8decb4e0d23adebfe
REACT_APP_AUTH_AUTHORITY: https://dtaas-digitaltwin.co/gitlab
REACT_APP_REDIRECT_URI: https://dtaas-digitaltwin.co/Library
REACT_APP_LOGOUT_REDIRECT_URI: https://dtaas-digitaltwin.co/
REACT_APP_GITLAB_SCOPES: openid profile read_user read_repository api

[JONOCX < NN NN NE NN EEON

-183/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.5.3 Add User

3.5.3 Add User

This page provides steps for adding a user to a DTaaS installation. The username alice is used here to illustrate the steps involved in
adding a user account.

The following steps should be performed:
1. Add user to GitLab instance:
A new account for the new user should be added on the GitLab instance. The username and email of the new account should be noted.
2. Create User Workspace:
The DTaa$S CLI should be used to bring up the workspaces for new users. This brings up the containers without backend authorization.
3. Add backend authorization for the user:

 Navigate to the docker directory

1 cd <DTaaS>/docker

* Add three lines to the conf.server file

1 rule.onlyu3.action=auth
2 rule.onlyu3.rule=PathPrefix("/alice")
3 rule.onlyu3.whitelist = alice@foo.com

4. Restart the docker container responsible for backend authorization:

1 docker compose -f compose.server.yml --env-file .env up \
2 -d --force-recreate traefik-forward-auth

5. The new users are now added to the DTaaS instance with authorization enabled.

-184/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.5.4 Remove User

3.5.4 Remove User

This page provides steps for removing a user from a DTaa$ installation. The username alice is used here to illustrate the steps involved in
removing a user account.

The following steps should be performed:

1. Remove an existing user with the DTaaS CLI.

2. Remove backend authorization for the user:
 Navigate to the docker directory

1 cd <DTaaS>/docker

* Remove these three lines from the conf.server file

1 rule.onlyu3.action=auth
2 rule.onlyu3.rule=PathPrefix("/alice")
3 rule.onlyu3.whitelist = alice@foo.com

* Run the command for these changes to take effect:

1 docker compose -f compose.server.yml --env-file .env up \
2 -d --force-recreate traefik-forward-auth

The extra users now have no backend authorization.
3. Remove users from GitLab instance (optional):
The GitLab docs provide additional guidance.

4. The user account is now deleted.

Caveat

The two base users that the DTaa$ platform was installed with cannot be deleted. Only the extra users that have been added to the
software can be deleted.

-185/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/ee/user/profile/account/delete_account.html

3.5.5 Link services to local ports

3.5.5 Link services to local ports

g
l(equirements

 User needs to have an account on server2.

* SSH server must be running on server2

To link a port from the service machine (server2) to the local port on the user workspace. You can use ssh local port forwarding technique.
1. Step:
Go to the user workspace, on which you want to map from localhost to the services machine
* e.g. foo.com/userl
2. Step:

Open a terminal in your user workspace.

Workspace ©ODocs | Open Tool v
Files Running IPython Clusters Nbextensions
Select items to perform actions on them. <> git| Upload New~
(Jo | ~ W/ Name ¥ Last Modified File size
O © common a day ago

3. Step:
Run the following command to map a port:

1 ssh -fNT -L <local_port>:<destination>:<destination_port> <user>@<services.server.com>

Here's an example mapping the RabbitMQ broker service available at 5672 of services.foo.com to localhost port 5672.

1 ssh -fNT -L 5672: localhost:5672 vagrant@services.foo.com

Now the programs in user workspace can treat the RabbitMQ broker service as a local service running within user workspace.

-186/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.5.6 Make Common Assets Read Only

3.5.6 Make Common Assets Read Only
Why

In some cases you might want to restrict the access rights of some users to the common assets. In order to make the common area read
only, you have to change the install script section performing the creation of user workspaces.

-
Kote

These step needs to be performed before installation of the application.

How

To make the common assets read-only for a user, the following changes need to be made to the compose.server.yml file.

1
2 userl:
3 B
4 volumes:
5 - S{DTAAS_DIR}/files/common: /workspace/common:ro
6 ..
7
8 user2:
9 ceee
10 volumes:

11 - ${DTAAS_DIR}/files/common: /workspace/common: ro

Please note the :ro at the end of the line. This suffix makes the common assets read only.

If you want to have the same kind of read only restriction for new users as well, please make a similar change in cli/users.server.yml .

-187/249 - Copyright © 2022 - 2026 The INTO-CPS Association

3.5.7 Renewing LetsEncrypt Certificates

3.5.7 Renewing LetsEncrypt Certificates

LetsEncrypt certificates expire every three months and must be renewed to prevent certificate validation errors in client web browsers.
This guide documents the certificate renewal process for DTaa$ platform installations using LetsEncrypt certificates.

Overview

The certificate renewal process involves three main phases:

Prerequisites

» Administrative access to the DTaaS server

* LetsEncrypt certbot installed on the system

* Valid domain name configured for certificate generation

* Access to Docker commands

Certificate Renewal Process

STEP 1: GENERATE NEW CERTIFICATES
Use LetsEncrypt certbot to renew existing certificates:

Test renewal process without actually renewing
sudo certbot renew --dry-run

Renew all certificates
sudo certbot renew

Renew specific certificate for domain
sudo certbot renew --cert-name example.com

© N U AW

STEP 2: LOCATE CERTIFICATE FILES

After successful renewal, locate the new certificate files:

Standard LetsEncrypt certificate location
ls -la /etc/letsencrypt/Live/your-domain.com/

Certificate files:

- fullchain.pem: Full certificate chain
- privkey.pem: Private key

- cert.pem: Certificate only

- chain.pem: Certificate chain only

© N U AW

STEP 3: DEPLOY CERTIFICATES TO DTAAS

1. Certificate Generation: Renewing certificates using LetsEncrypt certbot
2. Certificate Deployment: Copying new certificates to appropriate directories

3. Service Restart: Restarting affected services to load new certificates

Copy the renewed certificates to the appropriate DTaaS directories:

Copy certificates to DTaaS docker deployment

sudo cp /etc/letsencrypt/Llive/your-domain.com/fullchain.pem \
/path/to/DTaaS/deploy/docker/certs/your-domain.com/

sudo cp /etc/letsencrypt/Live/your-domain.com/privkey.pem \
/path/to/DTaaS/deploy/docker/certs/your-domain.com/

Copy certificates to DTaaS services deployment

sudo cp /etc/letsencrypt/Live/your-domain.com/fullchain.pem \
/path/to/DTaaS/deploy/services/certs/your-domain.com/

10 sudo cp /etc/letsencrypt/Llive/your-domain.com/privkey.pem \

11 /path/to/DTaaS/deploy/services/certs/your-domain.com/

© NG A WN e

-188/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

STEP 4: VERIFY CONTAINER VOLUME MAPPINGS

Before restarting services, verify the volume mappings to ensure certificates are mounted correctly:

1
2
3
4
5

Inspect container volume mappings
docker inspect <container-name>

Look for volume mounts in the output
Example: "/host/path/certs:/container/path/certs:ro"

STEP 5: RESTART DTAAS SERVICE GATEWAY

Navigate to the DTaaS docker deployment directory and restart Traefik:

1
2
3

cd /path/to/DTaaS/deploy/docker
docker compose -f compose.server.secure.yml --env-file .env.server up \
-d --force-recreate traefik

STEP 6: RESTART PLATFORM SERVICES

Navigate to the services directory and restart individual services:

1
2
3
4
5
6
7
8
9

cd /path/to/DTaaS/deploy/services

Restart Grafana
docker stop grafana-server
docker start grafana-server

Restart InfluxDB
docker stop influxdb
docker start influxdb

STEP 7: CONFIGURE RABBITMQ CERTIFICATES

3.5.7 Renewing LetsEncrypt Certificates

RabbitMQ requires a specific certificate format. Create a copy of the private key and restart the service:

Create RabbitMQ-specific private key
cp /path/to/DTaaS/deploy/services/certs/your-domain.com/privkey.pem \
/path/to/DTaaS/deploy/services/certs/your-domain.com/privkey-rabbitmq.pem

Restart RabbitMQ
docker restart rabbitmq

STEP 8: CONFIGURE MONGODB CERTIFICATES

MongoDB requires a combined certificate file containing both the certificate chain and private key:

© N U WwN

Create combined certificate file

cat /path/to/DTaaS/deploy/services/certs/your-domain.com/fullchain.pem \
/path/to/DTaaS/deploy/services/certs/your-domain.com/privkey.pem > \
/path/to/DTaaS/deploy/services/certs/your-domain.com/combined.pem

Restart MongoDB with new certificates
cd /path/to/DTaaS/deploy/services
docker compose -f compose.services.secure.yml \
--env-file config/services.env up -d --force-recreate mongodb

Verification

After completing the renewal process, verify that certificates are properly installed:

1
2
3
4
5
6
7

Test HTTPS connectivity
curl -I https://your-domain.com

Check Docker service logs for certificate errors
docker logs traefik

docker logs grafana-server

docker logs mongodb

-189/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

3.5.7 Renewing LetsEncrypt Certificates

Troubleshooting

COMMON ISSUES

Certificate Not Found Error : Verify that certificate files exist in the specified directories and have correct permissions (typically 644 for
certificates, 600 for private keys).

Service Restart Failures : Check Docker service logs for specific error messages. Ensure that certificate paths in Docker Compose files
match the actual file locations.

Browser Certificate Warnings : Clear browser cache and verify that the certificate chain is complete. Check that intermediate certificates
are included in the fullchain.pem file.

LOG ANALYSIS
Monitor service logs for certificate-related errors:

Monitor Traefik logs
docker logs traefik

Monitor service logs
docker logs grafana-server
docker Llogs influxdb
docker logs rabbitmq
docker logs mongodb

O~ U AW

Security Considerations

» Store private keys with restrictive permissions (600 or 640)

* Regularly monitor certificate expiration dates

* Implement automated monitoring to alert before certificate expiration
» Maintain backups of certificate files

* Use strong file system permissions on certificate directories

-190/249 - Copyright © 2022 - 2026 The INTO-CPS Association

4. Frequently Asked Questions

4. Frequently Asked Questions

4 1 Abreviations

Term Full Form

DT Digital Twin

DTaa$S Digital Twin as a Service
PT Physical Twin

4.2 General Questions

What is the DTaa$S platform?

The DTaaS platform is a software platform on which digital twins can be created and executed. The features page provides an overview of the
capabilities available in DTaaS.

What is the scope and current capabilities of the DTaaS platform?

=

. DTaaS is a web-based interface that allows invocation of various tools related to work to be performed with one or more DTs.

NS

. DTaa$ permits users to run DTs in their private workspaces. These user workspaces are based on the Ubuntu 20.04 Operating system.

w

DTaasS can help create reusable DT assets only if DT asset authoring tools can operate in the Ubuntu 20.04 xfce desktop environment.

[l

DTs are executables from the DTaa$ platform perspective. Users are not constrained to work with DTs in a specific manner. DTaa$S suggests
creation of DTs from reusable assets and provides a suggestive structure for DTs. The examples provide more insight into the DTaaS workflow.
However, this suggested workflow is not mandatory.

o1

DTs can be run as services with REST API from within user workspaces, which can facilitate service-level DT composition.

What can not be done inside the DTaaS platform?

=

. DTaas$ as such does not help install DTs obtained from external sources.

o

. The current user interface of the DTaaS web application is heavily reliant on the use of Jupyter Lab and Notebook. The Digital Twins page has
Create / Execute / Analyze sections, but all point to Jupyter Lab web interface. The functionality of these pages is still under development.

1s there any fundamental difference between commercial solutions like Ansys Twin Builder and the DTaaS platform?

Commercial DT platforms like Ansys Twin Builder provide tight integration between models, simulation and sensors. This leads to fewer
choices in DT design and implementation. In addition, there is a limitation of vendor lockin. On the other hand, DTaas lets users separate DT
into reusable assets and combine these assets in a flexible way.

Do you provide licensed software like Matlab?

Proprietary and commercially licensed software is not available by default on the software platform. However, users have private workspaces
based on a Linux xfce Desktop environment. Users can install proprietary and commercially licensed software in their workspaces. A
screencast demonstrates using Matlab Simulink within the DTaa$ platform. Licensed software installed by one user is not available to other
users.

-191/249 - Copyright © 2022 - 2026 The INTO-CPS Association

4.3 Digital Twin Assets

4.3 Digital Twin Assets

Can the DTaaS platform be used to create new DT assets?

The core feature of DTaa$ software is to help users create DTs from assets already available in the library. Create Library Assets However, it is
possible for users to take advantage of services available in their workspace to install asset authoring tools in their own workspace. These
authoring tools can then be used to create and publish new assets. User workspaces are private and are not shared with other users. Thus, any
licensed software tools installed in a workspace are only available to that user.

4.4 Digital Twin Models

Can the DTaaS platform create new DT models?

DTaas is not a model creation tool. Model creation tools can be placed inside DTaaS to create new models. The DTaa$ platform itself does not
create digital twin models but can help users create digital twin models. Linux desktop/terminal tools can be run inside DTaaS. Thus, models
can be created inside DTaa$S and executed using tools that run on Linux. Windows-only tools cannot run in DTaasS.

How can the DTaaS platform help to design geometric model? Does it support 3D modeling and simulation?

Well, DTaaS by itself does not produce any models. DTaa$ only provides a platform and an ecosystem of services to facilitate digital twins to be
run as services. Since each user has a Linux OS at their disposal, they can also run digital twins that have graphical interface. In summary, the
DTaaS platform is neither a modeling nor simulation tool. If you need these kinds of tools, you need to bring them onto the platform. For
example, if you need Matlab for your work, you need to bring he licensed Matlab software.

Can the DTaa$ platform support only the information models (or behavioral models) or some other kind of models?
The DTaa$ platform as such is agnostic to the kind of models you use. DTaa$S can run all kinds of models. This includes behavioral and data
models. As long as you have models and the matching solvers that can run in Linux OS, you are good to go in DTaaS. In some cases, models and

solvers (tools) are bundled together to form monolithic DTs. The DTaa$ platform does not limit you from running such DTs as well. DTaaS$ does
not provide dedicated solvers. But if you can install a solver in your workspace, then you don't need the platform to provide one.

Duoes it support XML-based representation and ontology representation?

Currently No. We are looking for users needing this capability. If you have concrete requirements and an example, we can discuss a
way of realizing it in DTaaS.

4.5 Communication Between Physical Twin and Digital Twin

how can the DTaaS platform control the physical entity? Which technologies it uses for controlling the physical world?

At a very abstract level, there is a communication from physical entity to digital entity and back to physical entity. How this communication
should happen is decided by the person designing the digital entity. The DTaa$S can provide communication services that can help you do this
communication with relative ease. You can use InfluxDB, RabbitMQ and Mosquitto services hosted on DTaa$S for two communication between
digital and physical entities.

-192/249 - Copyright © 2022 - 2026 The INTO-CPS Association

4.6 Digital Twin DevOps Automation

How would you measure a physical entity like shape, size, weight, structure, chemical attributes etc. using DTaaS? Any specific
technology used in this case?

The real measurements are done at physical twin which are then communicated to the digital twin. Any digital twin platform like DTaaS can
only facilitate this communication of these measurements from physical twin. The DTaaS provides InfluxDB, RabbitMQ and Mosquitto services
for this purpose. These three are probably most widely used services for digital twin communication. Having said that, DTaas$ allows you to
utilize other communication technologies and services hosted elsewhere on the Internet.

How can real-time data differ from static data and what is the procedure to identify dynamic data? Is there any UI or specific tool
used here?

The DTaaS platform can not understand the static or dynamic nature of data. It can facilitate storing names, units and any other text
description of interesting quantities (weight of batter, voltage output etc). It can also store the data being sent by the physical twin. The
distinction between static and dynamic data needs to be made by the user. Only metadata of the data can reveal such more information about
the nature of data. A tool can probably help in very specific cases, but you need metadata. If there is a human being making this distinction,
then the need for metadata goes down but does not completely go away. In some of the DT platforms supported by manufacturers, there is a
tight integration between data and model. In this case, the tool itself is taking care of the metadata. The DTaas$ is a generic platform which can
support execution of digital twins. If a tool can be executed on a Linux desktop / commandline, the tool can be supported within DTaaS. The
tool (ex. Matlab) itself can take care of the metadata requirements.

4.6 Digital Twin DevOps Automation

Can a DT execute forever?

The web UI imposes a 10-minute timeout. The users can manually terminate an ongoing execution. The best choice would be for a DT to
execute terminate script which consequently concludes the execution and returns the logs.

1s'the DT execution really scalable?

This capacity of DT execution infrastructure is dependent on GitLab and the available compute power available to runners of GitLab. GitLab
itself does not impose limits on the maximum number of runners.

l'have many GitLab runners attached with my GitLab repository? Which one is used?

This is indeterminate. You can't rely on the order and location of execution for a DT.

4.7 Data Management

Can the DTaaS platform collect data directly from sensors?

Yes via platform services.

-193/249 - Copyright © 2022 - 2026 The INTO-CPS Association

4.8 Platform Native Services on the DTaa$ Platform

Does DTaaS support data collection from different sources like hardware, software and network? Is there any user interface or
any tracking instruments used for data collection?

The DTaaS platform provids InfluxDB, PostgreSQL, RabbitMQ, MQTT, MongoDB and ThingsBoard services. Both the physical twin and digital
twin can utilize these protocols for communication. The IoT (time-series) data can be collected using InfluxDB and MQTT broker services.
There is a user interface for InfluxDB which can be used to analyze the data collected. Users can also manually upload their data files into the
DTaasS.

1s'the DTaaS platform able to transmit data to cloud in real time?

Yes via platform services.

Which transmission protocol does the DTaaS platform allow?

InfluxDB, RabbitMQ, MQTT and anything else that can be used from Cloud service providers.

Does the DTaaS platform support multisource information and combined multi sensor input data? Can it provide analysis and
decision-supporting inferences?

You can store information from multiple sources. The existing InfluxDB services hosted on DTaa$ already has a dedicated Influx / Flux query
language for doing sensor fusion, analysis and inferences.

Which kinds of visualization technologies the DTaaS platform can support (e.g. graphical, geometry, image, VR/AR
representation)?

Graphical, geometric and images. If you need specific licensed software for the visualization, you will have to bring the license for it. DTaa$S
does not support AR/VR.

4 8 Platform Native Services on the DTaaS Platform

1s'the DTaaS platform able to detect the anomalies about-to-fail components and prescribe solutions?

This is the job of a digital twin. If you have a ready to use digital twin that does the job, DTaaS allows others to use your solution. It is possible
to perform anomaly detection using the platform services such as Grafana, ThingsBoard and InfluxDB.

-194/249 - Copyright © 2022 - 2026 The INTO-CPS Association

4.9 Comparison with other DT Platforms

4.9 Comparison with other DT Platforms

All the DT platforms seem to provide different features. Is there a comparison chart?

Here is a qualitative comparison of different DT integration platforms:

Legend: high performance (H), mid performance (M) and low performance (L)

DT Platforms

Microsoft Azure
DT

AWS IOT
Greengrass

Eclipse Ditto

Asset
Administration
Shell

PTC Thingworx
GE Predix

The DTaaS
Platform

[T T NI R

License

Commercial
Cloud

Open source
commercial

Open source

Open source

Commercial
Commercial

Open source

DT

Development

Process

Adopted by Tanusree Roy from Table 4 and 5 of the following paper.

Ref: Naseri, F., Gil, S., Barbu, C., Cetkin, E., Yarimca, G., Jensen, A. C.,
... & Gomes, C. (2023). Digital twin of electric vehicle battery systems:
Comprehensive review of the use cases, requirements, and platforms.
Renewable and Sustainable Energy Reviews, 179, 113280.

Connectivity

Security Processing
power,
performance
and Scalability

H M

H M

M H

L H

H H

H M

L L

All the comparisons between DT platforms seems so confusing. Why?

The fundamental confusion comes from the fact that different DT platforms (Azure DT, GE Predix) provide different kind of DT capabilities.
You can run all kinds of models natively in GE Predix. In fact you can run models even next to (on) PTs using GE Predix. But you cannot
natively do that in Azure DT service. You have to do the leg work of integrating with other Azure services or third-party services to get the kind
of capabilities that GE Predix natively provides in one interface. The takeaway is that we pick horses for the courses.

4 10 GDPR Concerns

Does your platform adhere to GDPR compliance standards? If so, how?

The DTaaS platform does not store any personal information of users. It only stores username to identify users and these usernames do not

contain enough information to deduce the true identify of users.

-195/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

Data ¢

4.10 GDPR Concerns

ﬂlich security measures are deployed? How is data encrypted (if exists)?

The default installation requires a HTTPS terminating reverse proxy server from user to the DTaa$ platform installation. The administrators of
DTaas$ platform can also install HTTPS certificates into the application. The codebase can generate HTTPS application and the users also have
the option of installing their own certificates obtained from certification agencies such as LetsEncrypt.

@wt security measures does your cloud provider offer?

The the DTaa$ platform can be installed inside corporate server hosted behind network firewalls so that only permitted user groups have
access to the network and physical access to the server.

Qw is user access controlled and authenticated?

There is a two-level authorization mechanism in place in each default installation of the DTaaS. The first-level is HTTP basic authorization over
secure HTTPS connection. The second-level is the OAuth 2.0 PKCE authorization flow for each user. The OAuth 2.0 authorization is provider by
a GitLab instance. The DTaa$S does not store the account and authorization information of users.

&es you platform manage personal data? How is data classified and tagged based on the sensitivity? Who has access to the
critical data?

The platform does not store personal data of users.

&w are identities and roles managed within the platform?

There are two roles for users on the platform. One is the administrator and the other one is user. The user roles are managed by the
administrator.

-196/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5. Developer

5. Developer

5.1 Contributors Guide

This guide provides an overview of the contribution workflow for the Digital Twin as a Service (DTaaS) project. Contributors are
encouraged to review the Code of Conduct to ensure a respectful and collaborative community environment.

The following sections outline the contribution process, from opening an issue to creating a pull request (PR), conducting reviews, and

merging the PR.

5.1.1 Project Goals

The DTaaS$ platform aims to facilitate the creation, management, and execution of Digital Twins (DTs) through a service-oriented
architecture that promotes reusability of DT assets [1]. This documentation assists development team members in understanding the
DTaasS project software design and development processes.

Additional resources include:

* Developer Slides
* Video Presentation

* Research Paper

5.1.2 m Development Environment

A devcontainer configuration is provided in .devcontainer/devcontainer.json for the project. This configuration offers a dockerized
development environment and represents the recommended approach for establishing a consistent development setup. DevContainer
provides the most straightforward method for initializing the development environment.

5.1.3 fiz Development Workflow

A structured development workflow is employed to manage collaboration among multiple developers. Each contributor should adhere to
the following procedure:
1. Create a fork of the main repository into a personal GitHub account.
2. Configure Qlty, Codecov, and SonarQube for the forked repository. Note that Codecov does not require a secret token for public repositories.
3. Utilize Node.js 24 and Python 3.12 development environments.
4. Follow the Fork, Branch, PR workflow methodology.

5. Develop within the fork and create a PR from the working branch to the feature/distributed-demo branch. The PR triggers all GitHub Actions,
Qlty, SonarQube, and Codecov checks.

6. Address all issues identified during the automated checks.
7. Upon successful verification, submit a PR to the feature/distributed-demo branch of the upstream DTaaS repository.

8. The PR undergoes review and is merged by either project administrators or maintainers.

Each PR should represent a meaningful contribution that satisfies either a well-defined user story or improves code quality.

5.1.4 = Coding Agents and Editors

The project makes extensive use of coding agents. The primary usage scenarios include:
‘& Co-development assistance

= Code review support

-197/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://odin.cps.digit.au.dk/into-cps/dtaas/assets/20250605_Developer.pdf
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/videos/20250605_Developer-recorded_web.mp4
https://odin.cps.digit.au.dk/into-cps/dtaas/assets/DTaaS-journal-paper.pdf
https://docs.qlty.sh/cloud/quickstart
https://docs.codecov.com/docs/quick-start
https://docs.sonarsource.com/sonarqube-cloud/
https://gun.io/news/2017/01/how-to-github-fork-branch-and-pull-request/
https://github.com/INTO-CPS-Association/DTaaS

5.1.5 Code Quality

& Draft pull requests for prototyping ideas

This project is structured as a monorepo and includes copilot instructions that inform GitHub Copilot about the project structure and
software development conventions.

Modern Code IDEs such as VS Code and Cursor provide native integration with coding agents, requiring no additional configuration for
LLM-driven development workflows. Contributors should disclose code generated by coding agents, particularly when such code embeds
significant programming logic.

The following practices are strictly prohibited:
F Contributing unknown or unreviewed code
F Failing to understand the implications of generated code

Summary: Contributors must fully understand their contributions and should not delegate critical thinking to coding agents.

5.1.5 @ Code Quality

Project code quality is assessed through the following mechanisms:

« Static Analysis: Linting issues are identified by Qlty. Installation of Qlty CLI is recommended. Execute the command
qlty check --no-fail --sample 5 --no-formatters to identify code quality issues. Note that Qlty only analyzes files that differ from the default
branch (feature/distributed-demo).

* Security Scans: Code quality and security issues are identified by SonarQube.
» Test Coverage: Coverage reports are collected by Codecov.
* Continuous Integration: All GitHub Actions must complete successfully.
Qlty
Qlty performs static analysis, linting, and style checks to ensure optimal code quality for project contributions.

While newly introduced issues appear directly on the PR page, specific issues can be addressed by visiting the issues or code section of the
Qlty dashboard.

Code contributions should not introduce new quality issues. If such issues arise, they should be resolved immediately using the
appropriate suggestions from QIty. In exceptional cases, an ignore flag may be added, though this approach should be employed sparingly.

Codecov

Codecov maintains test coverage metrics for the entire project. For detailed information about testing practices and workflows, refer to the
testing documentation.

GitHub Actions

The project defines multiple GitHub Actions. All pull requests and direct commits must achieve successful status on all GitHub Actions.

5.1.6 References

[1] Talasila, Prasad, et al. "Composable digital twins on Digital Twin as a Service platform." Simulation 101.3 (2025): 287-311.

-198/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.qlty.sh
https://docs.qlty.sh/cli/quickstart
https://sonarcloud.io/project/overview?id=INTO-CPS-Association_DTaaS
https://codecov.io/gh/INTO-CPS-Association/DTaaS
https://github.com/INTO-CPS-Association/DTaaS/actions
https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/.github/workflows

5.2 Contributor Covenant Code of Conduct

5.2 Contributor Covenant Code of Conduct

5.2.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone,
regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

5.2.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

* Demonstrating empathy and kindness toward other people

* Being respectful of differing opinions, viewpoints, and experiences

* Giving and gracefully accepting constructive feedback

* Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

* Focusing on what is best not just for us as individuals, but for the overall community
Examples of unacceptable behavior include:

* The use of sexualized language or imagery, and sexual attention or advances of any kind

* Trolling, insulting or derogatory comments, and personal or political attacks

* Public or private harassment

* Publishing others' private information, such as a physical or email address, without their explicit permission

* Other conduct which could reasonably be considered inappropriate in a professional setting

5.2.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair
corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

5.2.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in
public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media
account, or acting as an appointed representative at an online or offline event.

5.2.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for
enforcement at Open new issue. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

5.2.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in
violation of this Code of Conduct:

-199/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.2.7 Attribution

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an
explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning
Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited
interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community
spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time.
No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is
allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior,
harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

5.2.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.contributor-covenant.org/version/
2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla's code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are
available at https://www.contributor-covenant.org/translations.

-200/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

5.3 Secrets for Github Action

5.3 Secrets for Github Action

The Github actions require the following secrets to be obtained from docker hub:

Secret Name Explanation

DOCKERHUB_SCOPE Username or organization name on docker hub

DOCKERHUB_USERNAME Username on docker hub

DOCKERHUB_TOKEN API token to publish images to docker hub, with Read, Write and Delete permissions
PACKAGE_NAME The name with which libms npm package must be published

Similarly, Github actions require the following secrets to be obtained from npmjs:

Secret Name Explanation

NPM_TOKEN Token to publish npm packages to the default npm registry.
PACKAGE_NAME The name with which libms npm package must be published
NPM_RUNNER_PACKAGE_NAME The name with which runner npm package must be published

Remember to add these secrets to Github Secrets Setting of your fork.

-201/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://hub.docker.com
https://npmjs.com
https://npmjs.com
https://docs.github.com/en/actions/security-for-github-actions/security-guides/using-secrets-in-github-actions#creating-secrets-for-a-repository

D U e W

5.4 System

5.4 System

5.4.1 =t System Overview

The Digital Twin as a Service (DTaaS$) platform is designed to support the complete digital twin (DT) lifecycle, enabling users to create,
configure, execute, and share digital twins through reusable assets[1]. The platform architecture reflects established principles for
realising digital twins in practice[2], while also supporting advanced use cases such as runtime verification of autonomous systems[3].

User Requirements

The platform provides the following core capabilities:

. Author - create different assets of the DT on the platform itself. This step requires use of some software frameworks and tools whose sole

purpose is to author DT assets.

. Consolidate - consolidate the list of available DT assets and authoring tools so that user can navigate the library of reusable assets. This

functionality requires support for discovery of available assets.

. Configure - support selection and configuration of DTs. This functionality also requires support for validation of a given configuration.
. Execute - provision computing infrastructure on demand to support execution of a DT.
. Explore - interact with a DT and explore the results stored both inside and outside the platform. Exploration may lead to analytical insights.

. Save - save the state of a DT that is already in the execution phase. This functionality is required for on-demand saving and re-spawning of

DTs.

. Services - integrate DTs with on-platform or external services with which users can interact with.

. Share - share a DT with other users of their organisation.

System Architecture

The figure shows the system architecture of the the DTaaS software platform.

Digital Twins

EIAl

Cloud Services

5.

~

DT Lifecycle
Manager

DT
Execution

: g DT Configuration @ monitoring
Manager

%
? what-if analysis visualisation

@FleetAnalySis m trends

-
= AS .
tool
Data /\ ools Serwces
@ models functions @ DTs

webapp
8 % E:l_ Service Router
v/ r\

"

data and @ X» | Reusable

control ity A 4
urt Asset
'53 @ 3ec/ Service | o°%®

Mesh
Physical (V)
Twins m
Workspaces IEI
e

Accounting

IIlL

-202/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.4.1 System Overview

SYSTEM COMPONENTS

Users interact with the software platform through a web application. The service router serves as the single point of entry for direct access
to platform services and is responsible for controlling user access to the microservice components. The service mesh enables discovery of
microservices, load balancing, and authorization functionalities.

In addition, there are microservices for catering to managing DT reusable assets, platform services, DT lifecycle manager, DT execution
manager, accouting and security. The microservices are complementary and composable; they fulfil core requirements of the system.

The microservices responsible for satisfying the user requirements are:

. The security microservice implements role-based access control (RBAC) in the platform.

. The accounting microservice is responsible for keeping track of the live status of platform, DT asset and infrastructure usage. Any
licensing, usage restrictions need to be enforced by the accounting microservice. Accounting is a pre-requisite to commercialisation of the
platform. Due to significant use of external infrastructure and resources via the platform, the accounting microservice needs to interface
with accounting systems of the external services.

. User Workspaces are virtual environments in which users can perform lifecycle operations on DTs. These virtual environments are either
docker containers or virtual machines which provide desktop interface to users.

. Reusable Assets are assets / parts from which DTs are created. Further explation is available on the assets page

. Services are dedicated services available to all the DTs and users of the DTaa$ platform. Services build upon DTs and provide user interfaces
to users.

. DT Execution Manager provides virtual and isolated execution environments for DTs. The execution manager is also responsible for
dynamic resource provisioning of cloud resources.

. DT Lifecycle Manager manages the lifecycle operations on all DTs. It also directs DT Execution Manager to perform execute, save and
terminate operations on DTs.

For a more detailed view, refer to the C4 architectural diagram.

A mapping of the architectural components to related pages in the documentation is available in the table.

System Component Doc Page(s)
Service Router Traefik Gateway
Web Application React Webapplication
Reusable Assets Library Microservice
Digital Twins and DevOps Integrated GitLab
Platform Services Third-party Services (MQTT, InfluxDB, RabbitMQ, Grafana, PostgreSQL, and ThingsBoard
DT Lifecycle Manager Not available yet
Security GitLab client OAuth 2.0 and server OAuth 2.0
Digital Twins as Services DT Runner
Accounting Not available yet
Execution Manager Not available yet
References

Font sources: fileformat
[1]: Talasila, Prasad, et al. "Composable digital twins on Digital Twin as a Service platform." Simulation 101.3 (2025): 287-311.

[2]: Talasila, Prasad, et al. "Realising digital twins." The engineering of digital twins. Cham: Springer International Publishing, 2024.
225-256.

-203/249 - Copyright © 2022 - 2026 The INTO-CPS Association

C4-L2_diagram.png
https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/servers/config/gateway#the-gateway-server
https://www.fileformat.info

5.4.1 System Overview

[3]: Kristensen, Morten Haahr, et al. "Runtime Verification of Autonomous Systems Utilizing Digital Twins as a Service." 2024 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). IEEE, 2024.

-204/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.4.2 Current Status

542 Current Status

The DTaasS software platform is currently under development. Crucial system components are in place with ongoing development work
focusing on increased automation and feature enhancement. The figure below shows the current status of the development work.

15 Grafana NMQTT

@ influxdb Q MongoDB
Services”” | lhaRabbit PostgreSQL
%ThingsBoard

Reusable 44 ¢4 M

Digital Twins

Assets
Service Router — S
D)
. Al
m docker
¢ user
data and ‘,X‘:. Workspaces -
3 control & E = Jupyter
Service VNC ¢ vs code
i Mesh
Physical
Twins

V S direct
T Cloud Services hosting
DevOps Infrastructure

A C4 representation of the same diagram is also available.

User Security

There is a two-level authorization mechanisms in place for the react website and the Traefik gateway.

The react website component uses GitLab for user authorization using OAuth 2.0 protocol.
GATEWAY AUTHORIZATION
The Traefik gateway has OAuth 2.0 web server authorization provided by Traefik-forward-auth microservice. This authorization protects

all the microservices and workspaces running in the backend.

= User Workspaces

All users have dedicated dockerized-workspaces. These docker-images are based on container images published by mltooling group.

Thus DT experts can develop DTs from existing DT components and share them with other users. A file server has been setup to act as a DT
asset repository. Each user gets space to store private DT assets and also gets access to shared DT assets. Users can synchronize their
private DT assets with external git repositories. In addition, the asset repository transparently gets mapped to user workspaces within
which users can perform DT lifecycle operations. There is also a library microservice which in the long-run will replace the file server.

Users can run DTs in their workspaces and also permit remote access to other users. There is already shared access to internal and
external services. With these two provisions, users can treat live DTs as service components in their own software systems.

4, Platform Services

There are four external services integrated with the DTaaS software platform. They are: ThingsBoard, InfluxDB, Grafana, RabbitMQ,
MQTT, MongoDB, and PostgreSQL

These services can be used by DTs and PTs for communication, storing and visualization of data. There can also be monitoring services
setup based on these services.

-205/249 - Copyright © 2022 - 2026 The INTO-CPS Association

current-status-developer-c4.png
https://github.com/thomseddon/traefik-forward-auth
https://github.com/ml-tooling/ml-workspace
https://github.com/thingsboard/thingsboard
https://github.com/influxdata/influxdb
https://github.com/grafana/grafana
https://github.com/rabbitmq/rabbitmq-server
https://github.com/eclipse/mosquitto
https://github.com/mongodb/mongo
https://www.postgresql.org/

5.4.2 Current Status

Development Priorities
The development priorities for the DTaaS software development team are:

* Create npm package for DevOps features of React Client

» Improve python package of platform services and DTaaS CLI
» Upgrade software stack of user workspaces

* Increased automation of installation procedures

* DT Configuration DSL in the form of YAML schema

Your contributions are highly welcome.

References

Font sources: fileformat

-206/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/deploy/services/cli
https://github.com/INTO-CPS-Association/DTaaS/tree/feature/distributed-demo/cli
https://www.fileformat.info

5.5 OAuth2 Authorization

5.5 OAuth2 Authorization

5.5.1 OAuth 2.0 Summary

The Authentication Microservice (Auth MS) operates according to the OAuth 2.0 RFC specification. This document provides a brief
summary of the OAuth 2.0 technology and its implementation within the DTaaS platform.

Entities

OAuth 2.0, as used for user identity verification, has 3 main entities:

» The User: This is the entity whose identity we are trying to verify/know. In our case, this is the same as the user of the DTaaS$ software.

* The Client: This is the entity that wishes to know/verify the identity of a user. In our case, this is the Auth MS (initialised with a GitLab
application). This shouldn’t be confused with the frontend website of DTaa$S (referred to as Client in the previous section).

* The OAuth 2.0 Identity Provider: This is the entity that allows the client to know the identity of the user. In our case, this is GitLab.
Most commonly, users have an existing, protected account with this entity. The account is registered using a unique key, like an email ID
or username and is usually password protected so that only that specific user can login using that account. After the user has logged in,
they will be asked to approve sharing their profile information with the client. If they approve, the client will have access to the user’s
email id, username, and other profile information. This information can be used to know/verify the identity of the user.

Note: In general, the Authorization server (which requests user approval) and the Resource (User Identity) provider can be two different
servers. However, in the DTaa$ implementation, the GitLab instance handles both functions through different API endpoints. The
underlying concepts remain the same. Therefore, this discussion focuses on the three main entities: the User, the OAuth 2.0 Client, and the
GitLab instance.

THE OAUTH 2.0 CLIENT
Many platforms allow the initialization of an OAuth 2.0 client. For the DTaaS implementation, GitLab is used by creating an "application"
within GitLab. However, it is not necessary to initialize a client using the same platform as the identity provider; these are separate
concerns. The DTaaS OAuth 2.0 client is initialized by creating and configuring a GitLab instance-wide application. There are two main
elements in this configuration:
* Redirect URI: This is the URI to which users are redirected after they approve sharing information with the client.
* Scopes: These define the types and levels of access that the client can have over the user's profile. For the DTaaS$, only the "read user"

scope is required, which permits access to the user's profile information for identity verification.

After the GitLab application is successfully created, a Client ID and Client Secret are generated. These credentials can be used in any
application, effectively making that application an OAuth 2.0 Client. For this reason, the Client Secret must never be shared. The DTaaS
Auth MS uses this Client ID and Client Secret, thereby functioning as an OAuth 2.0 Client application capable of following the OAuth 2.0
workflow to verify user identity.

OAuth 2.0 Workflows

Two major OAuth 2.0 flows are employed in the DTaa$ platform.

OAUTH 2.0 AUTHORIZATION CODE FLOW

This flow involves several steps and the exchange of an authorization code for access tokens to ensure secure authorization. This flow is
used by the DTaaS Auth MS, which is responsible for securing all backend DTaaS services.

The OAuth 2.0 workflow is initiated by the Client (Auth MS) whenever user identity verification is required. The flow begins when the Auth
MS sends an authorization request to GitLab. The Auth MS attempts to obtain an access token, which enables it to gather user information.
Once user information is retrieved, the Auth MS can verify the user's identity and determine whether the user has permission to access
the requested resource.

-207/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.5.1 OAuth 2.0 Summary

GET /BackendMS

» GET authcode (using OAUTH_CLIENT_ID);
redirects user for login & approval

Serves login page to user

Sends back login credentials N

User login verified
Asks user for approval to share data

User replies with approval

Redirects user to REDIRECT_URI;
P authcode in URI params

Verify state
GET access_token;

(using authcode, OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET)
»

>

Replies with an access token

GET user_details; (using access_token)

Checks access token
Sends user details

Checks user
200 OK permissions

A

The requests made by the Auth MS to the OAuth 2.0 provider are shown in abbreviated form. A detailed explanation of the workflow
specific to the DTaa$S can be found in the Auth MS implementation documentation.

OAUTH 2.0 PKCE (PROOF KEY FOR CODE EXCHANGE) FLOW

PKCE is an extension to the OAuth 2.0 Authorization Code Flow designed to provide an additional layer of security, particularly for public
clients that cannot securely store client secrets. PKCE mitigates certain attack vectors, such as authorization code interception.

The DTaaS client website login is implemented using the PKCE OAuth 2.0 flow. Further details about this flow are available in the Auth0
documentation.

-208/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-pkce
https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow-with-pkce

5.5.2 System Design of DTaaS Authorization Microservice

5.5.2 System Design of DTaaS Authorization Microservice

DTaasS requires backend authorization to protect its backend services and user workspaces. This document details the system design of the
DTaa$S Auth Microservice which is responsible for the same.

Requirements

For our purpose, we require the Auth MS to be able to handle only requests of the general form ”Is User X allowed to access /BackendMS/
example?”.

If the user’s identity is correctly verified though the GitLab OAuth 2.0 provider AND this user is allowed to access the requested
microservice/action, then the Auth MS should respond with a 200 (OK) code and let the request pass through the gateway to the required
microservice/server.

If the user’s identity verification through GitLab OAuth 2.0 fails OR this user is not permitted to access the request resource, then the Auth
MS should respond with a 40X (NOT OK) code, and restrict the request from going forward.

Forward Auth Middleware in Traefik

Traefik allows middlewares to be set for the routes configured into it. These middlewares intercept the route path requests, and perform
analysis/modifications before sending the requests ahead to the services. Traefik has a ForwardAuth middleware that delegates
authentication to an external service. If the external authentication server responds to the middleware with a 2XX response codes, the
middleware acts as a proxy, letting the request pass through to the desired service. However, if the external server responds with any
other response code, the request is dropped, and the response code returned by the external auth server is returned to the user

HTTP://DOMAIN/REQUEST/ i OK procees

‘_/\/'\Jr\\-») AuTHFORWARD \\’/‘\—"\/’ g

’_,"'-\\\
¥ .--r""\,,,,./ <. -
IF KO, RETURNS THE ERROR _ TN
\ \.4 SENDS THE REQUEST TO AUTHSERVER
0K/KO ___(o

‘ AUTHSERVER

——

\

— B

(source: Treafik documentation)

Thus, an Auth Microservice can be integrated into the existing gateway and DTaa$ system structure easily by adding it as the external
authentication server for ForwardAuth middlewares. These middlewares can be added on whichever routes/requests require
authentication. For our specific purpose, this will be added to all routes since we impose atleast identity verification of users for any
request through the gateway

Auth MS Design

The integrated Auth MS should thus work as described in the sequence diagram.

-209/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://doc.traefik.io/traefik/middlewares/http/forwardauth/

5.5.2 System Design of DTaaS Authorization Microservice

i Client (Frontend) Traefik Gateway Auth MS Backend MS
User A ' !
GET /BackendMS : . : :
— » GET /BackendMS ! Authorize user for ' H
> GET /BackendMS? -‘-l :
OK (200) i
[If identity is verified <]
and User A is allowed !
to GET /BackendMS] GET /BackendMS H .
H N
Response
Response < T
Response ' ‘
-« : l
——————————— rF-- - - ---F--"-"-"-"-"-"-"-"=-"94F-~"—"—"=—"—"—"—"—"—"—"¥—"—"—"—"—"=—"=—"=-=-—-"— = -«
Else NOT OK (40x)
Forbidden 403
Forbidden 403

* Any request made by the user is made on the React website, i.e. the frontend of the DTaa$ platform.
* This request then goes through the Traefik gateway. Here it should be interrupted by the respective ForwardAuth middleware.
* The middleware asks the Auth MS if this request for the given user should be allowed.

» The Auth MS, i.e. the Auth server verifies the identity of the user using OAuth 2.0 with GitLab, and checks if this user should be allowed
to make this request.

o If the user is verified and allowed to make the request, the Auth server responds with a 200 OK to Traefik Gateway (more specifically to
the middleware in Traefik)

* Traefik then forwards this request to the respective service. A response by the service, if any, will be passed through the chain back to
the user.

* However, If the user is not verified or not allowed to make this request, the Auth server responds with a 40x to Traefik gateway.

* Traefik will then drop the request and respond to the Client informing that the request was forbidden. It will also pass the Auth servers
response code

-210/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.5.3 Auth Microservice

5.5.3 Auth Microservice

This document details the workflow and implementation of the DTaaS Auth Microservice. Please go through the System Design and the
summary of the OAuth 2.0 technology to be able to understand the content here better.

Workflow

USER IDENTITY USING OAUTH 2.0
We define some constants that will help with the following discussion:

* CLIENT ID: The OAuth 2.0 Client ID of the Auth MS

* CLIENT SECRET: The OAuth 2.0 Client Secret of Auth MS

* REDIRECT URI: The URI where the user is redirected to after the user has approved sharing of information with the client.

» STATE: A random string used as an identifier for the specific "GET authcode" request (Figure 3.3)

* AUTHCODE: The one-use-only Authorization code returned by the OAuth 2.0 provider (GitLab instance) in response to "GET authcode"

after user approval.

Additionally, let's say DTaa$ uses a dedicated gitlab instance hosted at the URL https://gitlab.foo.com (instead of https://foo.com)

A

GET /BackendMS
q GET authcode (using OAUTH_CLIENT_ID);
redirects user for login & approval
Serves login page to user
Sends back login credentials N
d User login verified
Asks user for approval to share data
User replies with approval
Redirects user to REDIRECT_URI;
W authcode in URI params
)
Verify state
GET access_token;
(using authcode, OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET)
)
Ll
P Replies with an access token
)
GET user_details; (using access_token)
Checks access token
P Sends user details
)
Checks user
P 200 OK permissions
)

A successful OAuth 2.0 workflow (Figure 3.3) has the following steps:

* The user requests a resource, say GET/BackendMS
» The Auth MS intercepts this request, and starts the OAuth 2.0 process.

» The Auth MS sends a authorization request to the GitLab instance.

-211/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.foo.com
https://foo.com

5.5.3 Auth Microservice

This is written in shorthand as GET/authcode. The actual request (a user redirect) looks like:

https ://gitlab.foo.com/oauth/
authorize?

response_type=code&
client_id=0AUTH_CLIENT_ID&
redirect_uri=REDIRECT_URI&
scope=read_user&state = STATE

(SN, I NUIUR R

Here the gitlab.foo.com/oauth/authorize is the specific endpoint of the GitLab instance that handles authorisation code requests.

The query parameters in the request include the expected response type, which is fixed as “code”, meaning that we expect an
Authorization code. Other query parameters are the client id, the redirect uri, the scope which is set to read user for our purpose, and the
state (the random string to identify the specific request).

» The OAuth 2.0 provider redirects the user to the login page. Here the user logs into their protected account with their username/email
ID and password.

» The OAuth 2.0 provider then asks the user to approve/deny sharing the requested information with the Auth MS. The user should
approve this for successful authentication.

* After approval, the user is redirected by the GitLab instance to the REDIRECT URI. This URI has the following form:
1 REDIRECT_URT?code=AUTHCODE&state=STATE

The REDIRECT URI is as defined previously, during the OAuth 2.0 Client initialisation, i.e. the same as the one provided in the "GET
authcode” request by the Auth MS. The query parameters are provided by the GitLab instance. These include the AUTHCODE which is the
authoriation code that the Auth MS had requested, and the STATE which is the same random string in the "GET authcode” request.

» The Auth MS retrieves these query parameters. It verifies that the STATE is the same as the random string it provided during the "GET
authcode" request. This confirms that the AUTHCODE it has received is in response to the specific request it had made.

» The Auth MS uses this one-use-only AUTHCODE to exchange it for a general access token. This access token wouldn’t be one-use-only,
although it would expire after a specified duration of time. To perform this exchange, the Auth MS makes another request to the GitLab
instance. This request is written in shorthand as GET/access_token in the sequence diagram. The true form of the request is:

POST https://gitlab.foo.com/oauth/token,
parameters = 'client_id=0AUTH_CLIENT_ID&
client_secret=0AUTH_CLIENT_SECRET&
code=AUTHCODE&
grant_type=authorization_code&
redirect_uri=REDIRECT_URI

(=N, I NS UR R

The request to get a token by exchanging an authorization code, is actually a POST request (for most OAuth 2.0 providers). The https://
gitlab.foo.com/oauth/token API endpoint handles the token exchange requests. The parameters sent with the POST request are the client
ID, the client secret, the AUTHCODE and the redirect uri. The grant type parameter is always set to the string "authorization code”, which
conveys that we will be exchanging an authentication code for an access token.

» The GitLab instance exchanges a valid AUTHCODE for an Access Token. This is sent as a response to the Auth MS. An example response
is of the following form:

"access_token": "d8aed28aa506f9dd350e54" ,
"token_type": "bearer"

"expires_in": 7200,
"refresh_token":"825f3bffb2544b976633a1",
"created_at": 1607635748

~o U s WwN

The access token field provides the string that can be used as an access token in the headers of requests tryng to access user information.
The token type field is usually “bearer”, the expires in field specifies the time in seconds for which the access token will be valid, and the

-212/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.foo.com/oauth/token
https://gitlab.foo.com/oauth/token

5.5.3 Auth Microservice

created at field is the Epoch timestamp at which the token was created. The refresh token field has a string that can be used to refresh the
access token, increasing it’s lifetime. However we do not make use of the refresh token field. If an access token expires, the Auth MS simply
asks for a new one. TOKEN is the access token string returned in the response.

* The Auth MS has finally obtained an access token that it can use to retrieve the user’s information. Note that if the Auth MS already had
an existing valid access token for information about this user, the steps above wouldn’t be necessary, and thus wouldn’t be performed
by the Auth MS. The steps till now in the sequence diagram are simply to get a valid access token for the user information.

» The Auth MS makes a final request to the GitLab instance, shorthanded as GET user_details in the sequence diagram. The actual request
is of the form:

1 GET https ://gitlab.foo.com/api/v4/user
2 "Authorization": Bearer <TOKEN>

Here, https://gitlab.foo.com/api/v4/user is the API endpoint that responds with user information. An authorization header is required on
the request, with a valid access token. The required header is added here, and TOKEN is the access token that the Auth MS holds.

» The GitLab instance verifies the access token, and if it is valid, responds with the required user information. This includes username,
email ID, etc. An example response looks like:

1

2 "id": 8,

3 "username": "UserX"

4 "name": "XX",

5 "state": "active",

6 "web_url": "http://gitlab.foo.com/UserX"
7 "created_at":"2023-12-03 T10:47:21.970 Z"
8 "bio": ""

9 Llocation

10 "public_email": null

11 "skype"

12 "Linkedin

13 "twitter":

14 "organization": "",

15 "job_title": "",

16 "work_information": null,

17 "followers": 0,

18 "following": 0,

19 "is_followed ": false,

20 "local_time": null,

21 "last_sign_in_at": "2023-12-13 T12:46:21.223 7",
22 "confirmed_at": "2023-12-03 T10:47:21.542 Z "
23 "last_activity_on": "2023-12-13",

24 "email": "UserX@localhost"

25 "projects_Limit": 100000,

26}

The important fields from this response are the "email”, “username” keys. These keys are unique to a user, and thus provide an identity to
the user.

» The Auth MS retrieves the values of candidate key fields like “email”, username” from the response. Thus, the Auth MS now knows the
identity of the user.

CHECKING USER PERMISSIONS - AUTHORIZATION

An important feature of the Auth MS is to implement access policies for DTaaS resources. We may have requirements that certain
resources and/or microservices in DTaa$S should only be accessible to certain users. For example, we may want that /BackendMS/user1
should only be accessible to the user who has username userl. Another example may be that we may want /BackendMS/group3 to only be
available to users who have an email ID in the domain @gmail.com. The Auth MS should be able to impose these restrictions and make
certain services selectively available to certain users. There are two steps to doing this:

* Firstly, the user’s identity should be known and trusted. The Auth MS should know the identity of a user and believe that the user is who
they claim to be. This has been achieved in the previous section

* Secondly, this identity should be analysed against certain rules or against a database of allowed users, to determine whether this user
should be allowed to access the requested resource.

The second step requires, for every service, either a set of rules that define which users should be allowed access to the service, or a

database of user identities that are allowed to access the service. This database and/or set of rules should use the user identities, in our
case the email ID or username, to decide whether the user should be allowed or not. This means that the rules should be built based on the

-213/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.foo.com/api/v4/user

5.5.3 Auth Microservice

kind of username/ email ID the user has, say maybe using some RegEx. In the case of a database, the database should have the user
identity as a key. For any service, we can simply look up if the key exists in the database or not and allow/deny the user access based on
that.

In the sequence diagram, the Auth MS has a self-request marked as *Checks user permissions” after receiving the user identity from the
GitLab instance. This is when the Auth MS compares the identity of the user to the rules and/or database it has for the requested service.
Based on this, if the given identity has access to the requested resource, the Auth MS responds with a 200 OK. This finally marks a
succcessful authentication, and the user can now access the requested resource. Note: Again, the Auth MS and user do not communicate
directly. All requests/responses of the Auth MS are with the Traefik gateway, not the User directly. Infact, the Auth MS is the external server
used by the ForwardAuth middleware of the specific route, and communicates with this middleware. If the authentication is successful,
The gateway forwards the request to the specific resource when the 200 OK is recieved, else it drops the request and returns the error code
to the user.

Implementation

TRAEFIK-FORWARD-AUTH

The implementation approach is setting up and configuring the open source thomseddon/traefik-forward-auth for our specific use case.
This would work as our Auth microservice.

The traefik-forward-auth software is available as a docker.io image. This works as a docker container. Thus there are no dependency
management issues. Additionally, it can be added as a middleware server to traefik routers. Thus, it needs atleast Traefik to work along
with it properly. It also needs active services that it will be controlling access to. Traefik, the traefikforward-auth service and any services
are thus, treated as a stack of docker containers. The main setup needed for this system is configuring the compose.yml file.

There are three main steps of configuring the Auth MS properly.

* The traefik-forward-auth service needs to be configured carefully. Firstly, we set the environment variables for our specific case. Since,
we are using GitLab, we use the generic-oauth provider configuration. Some important variables that are required are the OAuth 2.0
Client ID, Client Secret, Scope. The API endpoints for getting an AUTHCODE, exchanging the code for an access token and getting user
information are also necessary

Additionally, it is necessary to create a router that handles the REDIRECT URI path. This router should have a middleware which is set to
traefik-forward-auth itself. This is so that after approval, when the user is taken to REDIRECT UR], this can be handled by the gateway and
passed to the Auth service for token exchange. We add the ForwardAuth middleware here, which is a necessary part of our design as
discussed before. We also add a load balancer for the service. We also need to add a conf file as a volume, for selective authorization rules
(discussed later). This is according to the suggested configuration. Thus, we add the following to our docker services:

1 traefik-forward-auth:

2 image: thomseddon/traefik-forward-auth: latest

3 volumes:

4 - <filepath>/conf:/conf

5 environment:

6 - DEFAULT_PROVIDER = generic - oauth

7 - PROVIDERS_GENERIC_OAUTH_AUTH_URL=https://gitlab.foo.com/oauth/authorize
8 - PROVIDERS_GENERIC_OAUTH_TOKEN_URL=https://gitlab.foo.com/oauth/token

9 - PROVIDERS_GENERIC_OAUTH_USER_URL=https://gitlab.foo.com/api/v4/user

10 - PROVIDERS_GENERIC_OAUTH_CLIENT_ID=0OAUTH_CLIENT_ID

11 - PROVIDERS_GENERIC_OAUTH_CLIENT_SECRET=0AUTH_CLIENT_SECRET

12 - PROVIDERS_GENERIC_OAUTH_SCOPE = read_user

13 - SECRET = a - random - string

14 # INSECURE_COOKIE is required if

15 # not using a https entrypoint

16 - INSECURE_COOKIE = true

17 labels:

18 - "traefik.enable=true"

19 - "traefik.http.routers.redirect.entryPoints=web"

20 - "traefik.http.routers.redirect.rule=PathPrefix(/_oauth)"

21 - "traefik.http.routers.redirect.middlewares=traefik-forward-auth"

22 - "traefik.http.middlewares.traefik-forward-auth.forwardauth.address=http://traefik-forward-auth:4181"
23 - "traefik.http.middlewares.traefik-forward-auth. forwardauth.authResponseHeaders=X-Forwarded-User"
24 - "traefik.http.services.traefik-forward-auth. loadbalancer.server.port=4181"

* The traefik-forward-auth service should be added to the backend services as a middleware.

-214/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/thomseddon/traefik-forward-auth

5.5.3 Auth Microservice

To do this, the docker-compose configurations of the services need to be updated by adding the following lines:

1 - "traefik.http.routers.<service-router>.rule=Path(/<path>)"
2 - "traefik.http.routers.<service-router>.middlewares=traefik-forward-auth"

This creates a router that maps to the required route, and adds the auth middleware to the required route.

« Finally, we need to set user permissions on user identities by creating rules in the conf file. Each rule has a name (an identifier for the
rule), and an associated route for which the rule will be invoked. The rule also has an action property, which can be either “auth” or
”allow”. If action is set to “allow”, any requests on this route are allowed to bypass even the OAuth 2.0 identification. If the action is set
to “auth”, requests on this route will require User identity OAuth 2.0 and the system will follow the sequence diagram. For rules with
action="auth”, the user information is retrieved. The identity we use for a user is the user’s email ID. For *auth” rules, we can configure
two types of User restrictions/permissions on this identity:

» Whitelist - This would be a list of user identities (email IDs in our case) that are allowed to access the corresponding route.

* Domain - This would be a domain (example: gmail.com), and only email IDs (user identities) of that domain (example:
johndoe@gmail.com) would be allowed access to the corresponding route.

Configuring any of these two properties of an "auth” rule allows us to selectively permit access to certain users for certain resources. Not
configuring any of these properties for an auth” rule means that the OAuth 2.0 process is carried out and the user identity is retrieved, but
all known user identities (i.e. all users that successfully complete the OAuth 2.0) are allowed to access the resource.

DTaasS currently uses only the whitelist type of rules.
These rules can be used in 3 different ways described below. The exact format of lines to be added to the conf file are also shown.
* No Auth - Serves the Path(‘/public‘) route. A rule with action="allow” should be imposed on this.

1 rule.noauth.action=al low
2 rule.noauth. rule=Path(" /public’)

* User specific: Serves the Path(‘/user1) route. A rule that only allows "user1@localhost” identity should be imposed on this

1 rule.onlyul.action=auth
2 rule.onlyul.rule=Path(" /userl’)
3 rule.onlyul.whitelist=userl@localhost

* Common Auth - Serves the Path(/common) route. A rule that requires OAuth 2.0, i.e. with action="allow”, but allows all valid and
known user identities should be imposed on this.

1 rule.all.action = auth
2 rule.all.rule = Path("/common")

-215/249 - Copyright © 2022 - 2026 The INTO-CPS Association

mailto:johndoe@gmail.com

5.6 Testing

5.6 Testing

5.6.1 9 Fundamental Concepts in Software Testing
Definition of Software Testing

Software testing is a procedure to investigate the quality of a software product across different scenarios. It can also be defined as the
process of verifying and validating that a software program or application works as expected and meets the business and technical
requirements that guided its design and development.

Importance of Software Testing

Software testing is essential for identifying defects and errors introduced during different development phases. Testing also ensures that
the product under test works as expected across expected scenarios — a stronger test suite results in greater confidence in the product
being built. One important benefit of software testing is that it enables developers to make incremental changes to source code while
ensuring that current changes do not break the functionality of previously existing code.

Test Driven Development (TDD)

Test Driven Development (TDD) is a software development process that relies on the repetition of a very short development cycle: first, the
developer writes an (initially failing) automated test case that defines a desired improvement or new function, then produces the
minimum amount of code to pass that test, and finally refactors the new code to acceptable standards. The goal of TDD can be viewed as
specification rather than validation. In other words, TDD provides a methodology for thinking through requirements or design before
writing functional code.

Behaviour Driven Development (BDD)

Behaviour Driven Development (BDD) is a software development process that emerged from TDD. It includes the practice of writing tests
first, but focuses on tests that describe behavior rather than tests that verify a unit of implementation. This approach provides software
development and management teams with shared tools and a shared process for collaborating on software development. BDD is largely
facilitated through the use of a simple domain-specific language (DSL) employing natural language constructs (e.g., English-like sentences)
that can express behavior and expected outcomes. Mocha and Cucumber testing libraries are built around the concepts of BDD.

5.6.2 fz Testing Workflow
A A

more slower

integration
Ul
Tests
Service Tests
more Unit Tests
isolation faster

(Ref: Ham Vocke, The Practical Test Pyramid)

-216/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://martinfowler.com/articles/practical-test-pyramid.html

5.6.3 References

The DTaaS project follows a testing workflow in accordance with the test pyramid diagram shown above, starting with isolated tests and
moving towards complete integration for any new feature changes. The different types of tests, in the order that they should be
performed, are explained below:

Unit Tests

Unit testing is a level of software testing where individual units/ components of a software are tested. The objective of Unit Testing is to
isolate a section of code and verify its correctness.

Ideally, each test case is independent from the others. Substitutes such as method stubs, mock objects, and spies can be used to assist
testing a module in isolation.

BENEFITS OF UNIT TESTING

* Unit testing increases confidence in changing and maintaining code. When good unit tests are written and executed every time code is
changed, defects introduced due to the change can be promptly identified.

* When code is designed to be less interdependent to facilitate unit testing, the unintended impact of changes to any code is reduced.

* The cost, in terms of time, effort, and money, of fixing a defect detected during unit testing is lower compared to defects detected at
higher levels.

UNIT TESTS IN DTAAS
Each component of the DTaa$ project uses a unique technology stack; therefore, the packages used for unit tests differ across components.
The test/ directory of each component contains information about the specific unit test packages employed.

Integration Tests

Integration testing is the phase in software testing in which individual software modules are combined and tested as a group. The DTaa$
project uses an integration server for software development as well as integration testing.

The existing integration tests are performed at the component level. Integration tests between components have not yet been

implemented; this task has been deferred to future development.

End-to-End Tests

Testing code changes through the end-user interface of the software is essential to verify that the code produces the desired effect for
users. End-to-End tests in DTaaS require a functional setup.

End-to-end testing capabilities in DTaa$ are currently limited; further development of this testing layer has been deferred to future work.

Feature Tests

A software feature can be defined as changes made to the system to add new functionality or modify existing functionality. Each feature is
characterized by being useful, intuitive, and effective. It is important to test new features upon implementation and to ensure that they do
not break the functionality of existing features. Feature tests are therefore essential for maintaining software quality.

The DTaa$ project does not currently include feature tests. Cucumber is planned for use in implementing feature tests in future
development.

5.6.3 References

1. Arthur Hicken, Shift left approach to software testing
2. Justin Searls and Kevin Buchanan, Contributing Tests wiki.

3. This wiki has good explanation of TDD and test doubles.

-217/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://martinfowler.com/articles/practical-test-pyramid.html#UnitTests
https://martinfowler.com/articles/practical-test-pyramid.html#IntegrationTests
https://github.com/INTO-CPS-Association/DTaaS/wiki/DTaaS-Integration-Server
https://martinfowler.com/articles/practical-test-pyramid.html#End-to-endTests
https://github.com/INTO-CPS-Association/DTaaS/blob/feature/distributed-demo/client/test/README.md
https://github.com/cucumber/cucumber-js
https://www.stickyminds.com/article/shift-left-approach-software-testing
https://github.com/testdouble/contributing-tests/wiki
https://github.com/testdouble/contributing-tests/wiki/Test-Driven-Development
https://github.com/testdouble/contributing-tests/wiki/Test-Double

5.7 Docker Workflow for DTaaS

5.7 Docker Workflow for DTaaS

This document describes the building and use of different Docker files for development and installation of the DTaa$S platform.

NOTE: A local Docker CE installation is a prerequisite for using Docker workflows.

5.7.1 Folder Structure

There are four dockerfiles for building the containers:

* client.dockerfile: Dockerfile for building the client application container.

* client.built.dockerfile: Dockerfile for copying an already built client application into docker image. This dockerfile copies client/build
directory and serves it from inside the docker container.

* libms.dockerfile: Dockerfile for building the library microservice container from source code.

¢ libms.npm.dockerfile: Dockerfile for building the library microservice container from published npm package at npmjs.com. This
Dockerfile is only used during publishing. It is used neither in the development builds nor in Github actions.

In addition, there are docker compose and configuration files.

» compose.dev.yml: Docker Compose configuration for development environment.
* .env: environment variables for docker compose file

* conf.dev OAuth 2.0 configuration required by the Traefik forward-auth service

5.7.2 Build and Publish Docker Images

The github workflows publish docker images of client website and libms to github and docker hub.

Developer Usage

Docker images are useful for development purposes. Developers are advised to build the required images locally on their computers for
use during development. The images can be built using

1 docker compose -f compose.dev.yml build

5.7.3 Running Docker Containers

The following steps describe how to use the application with Docker.

The DTaa$ platform requires multiple configuration files. The list of configuration files to be modified is provided for each scenario.

Development Environment
This scenario is intended for software developers.
The following configuration files require updating:

1. docker/.env : Refer to the Docker installation documentation for guidance on updating this configuration file.
2. docker/conf.dev : Refer to the Docker installation documentation for guidance on updating this configuration file.
3. client/config/local.js : Refer to the client configuration documentation for guidance on updating this configuration file.

4. servers/lib/config/libms.dev.yaml : Refer to the library microservice configuration documentation for guidance on updating this
configuration file.

-218/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/orgs/INTO-CPS-Association/packages?repo_name=DTaaS
https://hub.docker.com/u/intocps

5.7.3 Running Docker Containers

The docker commands need to be executed from this directory (docker). The relevant docker commands are:

1 docker compose -f compose.dev.yml up -d #start the application
2 docker compose -f compose.dev.yml down #terminate the application

Accessing the Application

The application should be accessed through the port mapped to the Traefik container, e.g., localhost .

-219/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.8 Publish NPM packages

5.8 Publish NPM packages

The DTaaS platform is developed as a monorepo with multiple npm packages.

5.8.1 Default npm registry

The default registry for npm packages is npmjs. The freely-accessible public packages are published to the npmjs registry. The publication
step is manual for the runner.

Ga W N e

npm login --registry="https://registry.npmjs.org"

cat ~/.npmrc #shows the auth token for the registry

//registry.npmjs.org/:_authToken=xxXXXXXXxx

yarn publish --registry="https://registry.npmjs.org" \
--no-git-tag-version --access public

At least one version of runner package is published to this registry for each release of the DTaaS platform.

The publication steps for library microservice and runner are automated via github actions.

5.8.2 Github npm registry

The Github actions of the project publish packages. The only limitation is that the users need an access token from Github.

5.8.3 Private Registry

Setup private npm registry

Since publishing to npmjs is irrevocable and public, developers are encouraged to setup their own private npm registry for local
development. A private npm registry will help with local publish and unpublish steps.

We recommend using verdaccio for this task. The following commands help you create a working private npm registry for development.

[o T I NI R

docker run -d --name verdaccio -p 4873:4873 verdaccio/verdaccio

npm adduser --registry http://localhost:4873 #create a user on the verdaccio registry

npm set registry http://localhost:4873/

yarn config set registry "http://localhost:4873"

yarn login --registry "http://localhost:4873" #login with the credentials for yarn utility
npm login #login with the credentials for npm utility

You can open http://localhost:4873 in your browser, login with the user credentials to see the packages published.

PUBLISH TO PRIVATE NPM REGISTRY

To publish a package to your local registry, do:

W e

yarn install

yarn build #the dist/ directory is needed for publishing step

yarn publish --no-git-tag-version #increments version in package.json, publishes to registry
yarn publish #increments version in package.json, publishes to registry and adds a git tag

The package version in package.json gets updated as well. You can open http://localhost:4873 in your browser, login with the user
credentials to see the packages published. Please see verdaccio docs for more information.

If there is a need to unpublish a package, ex: @dtaas/runner@o.0.2, do:

1
2

npm unpublish --registry http://localhost:4873/ \
@dtaas/runner@0.0.2

To install / uninstall this utility for all users, do:

sudo npm install --registry http://localhost:4873 \

-g @dtaas/runner
sudo npm List -g # should List @dtaas/runner in the packages
sudo npm remove --global @dtaas/runner

-220/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://registry.npmjs.org
https://github.com/orgs/INTO-CPS-Association/packages?repo_name=DTaaS
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://www.npmjs.com/
https://verdaccio.org
https://verdaccio.org/docs/installation/#basic-usage

5.8.3 Private Registry

4 Use the packages
The packages available in private npm registry can be used like the regular npm packages installed from npmjs.
For example, to use @dtaas/runner@0.0.2 package, do:

1 sudo npm install --registry http://localhost:4873 \
2 -g @dtaas/runner
3 runner # launch the digital twin runner

-221/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://www.npmjs.com/

5.9 Command Line Interface

5.9 Command Line Interface

The Command Line Interface (CLI) provides administrators with programmatic control over the DTaaS platform. This administrative tool

manages provisioning and deprovisioning of user accounts.

5.9.1 Package Structure

The CLI package is organized as follows:

© NG A WN e

1
12
13
14
15
16
17
18

20
21
22

5.9.2 Architecture and Design

cli/
f—— src/
| f—— __init__.py
| —— cmd.py
[pkg/
| f—— config.py
| f—— constants.py
| —— users.py
| —— utils.py
|—— tests/

f—— test_cli.py

|

| f—— test_cmd.py

| F—— test_config.py
| f—— test_users.py
| f—— test_utils.py
| L— data/

f—— examples/

|—— dtaas.toml

f—— users. local.yml
—— users.server.yml
—— users.server.secure.ynl
—— pyproject.toml

Application source code

Package initialization

Click command groups and handlers
Package modules

Configuration management (TOML parsing)
Constant definitions

User Llifecycle operations

File I/0 and utilities
Test suites

CLI integration tests

Command handler tests

Configuration tests

User operations tests

Utility function tests

Test fixtures
Example configuration files
Default configuration file

Local deployment template

Server deployment template
Secure server template
Poetry project configuration

The CLI is implemented as a Python package using the Click framework for command parsing. The design separates configuration

management, user operations, and utility functions into distinct classes and utility functions.

classDiagram
class dtaas {

}

+admin() group

class admin {

}

+user() group

class user {

}

+add() command
+delete() command

class Config {

}

-data: dict

+get_config() tuple
+get_from_config(key) tuple
+get_common() tuple
+get_users() tuple

+get_path() tuple
+get_server_dns() tuple
+get_add_users_List() tuple
+get_delete_users_List() tuple
+get_resource_Limits() tuple

class users {

}

+add_users(config_obj) error
+delete_user(config_obj) error

+get_compose_config(username, server, path, resources) tuple

+create_user_files(users, file_path) void
+start_user_containers(users) error
+stop_user_containers(users) error

class utils {

+import_yaml(filename) tuple
+export_yaml(data, filename) error
+import_tomL(filename) tuple
+replace_all(obj, mapping) tuple
+check_error(err) void

-222/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

5.9.3 Sequence Diagram

dtaas --> admin : contains
admin --> user : contains
user --> Config : uses
user --> users : calls
users --> utils : uses
Config --> utils : uses

Key Modules
Module Purpose
cnd. py Defines Click command groups and command handlers
config.py Configuration management via TOML file parsing
users.py User lifecycle operations (add/delete)
utils.py File I/O and template substitution utilities

Configuration Module

The config class serves as the central configuration manager, reading from dtaas.tonl . It provides accessor methods that return tuples of
(value, error), following a Go-style error handling pattern that enables explicit error propagation without exceptions.

Key configuration sections include:

» common: Server DNS, installation path, and resource limits

« users: Lists of users to add or delete

User Operations Module
The user operations module manages the complete lifecycle of user workspaces:

1. Workspace Creation: Copies template directory structure for each user
2. Container Configuration: Generates Docker Compose service definitions with configurable resource limits (CPU, memory, shared memory,

process limits)

3. Container Orchestration: Starts and stops user containers via Docker Compose commands

Utility Functions
The utilities module provides:

* YAML/TOML 1/0O: Safe file reading and writing operations
* Template Substitution: Recursive placeholder replacement in nested data structures (strings, lists, dictionaries)

* Error Checking: Helper function for converting errors to exceptions

5.9.3 Sequence Diagram
The following diagram illustrates the user addition workflow:

sequenceDiagram
actor Admin
participant CLI as Click CLI
participant Config as Config Class
participant Users as users.py
participant Utils as utils.py
participant Docker as Docker Compose
participant FS as File System

Admin ->> CLI: dtaas admin user add
activate CLI

CLI ->> Config: Config()

activate Config
Config ->> Utils: import_toml("dtaas.toml")

-223/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.9.4 Error Handling Pattern

Utils -->> Config: config data
deactivate Config

CLI ->> Users: add_users(config_obj)
activate Users

Users ->> Utils: import_yaml("compose.users.yml")
Utils -->> Users: compose dict

Users ->> Config: get_add_users_Llist()
Config -->> Users: user List

Users ->> Config: get_server_dns()
Config -->> Users: server DNS

Users ->> Config: get_path()
Config -->> Users: installation path

Users ->> Config: get_resource_Limits()
Config -->> Users: resource Llimits

loop For each user
Users ->> FS: Copy template directory
Users ->> Users: get_compose_config()
Users ->> Users: Add service to compose
end

Users ->> Utils: export_yaml(compose)
Utils ->> FS: Write compose.users.yml

Users ->> Docker: docker compose up -d
Docker -->> Users: Container started

Users -->> CLI: Success
deactivate Users

CLI -->> Admin: "Users added successfully"
deactivate CLI

5.9.4 Error Handling Pattern

The CLI employs a consistent error handling strategy throughout the codebase:

1. Functions return errors as values: Most functions return a tuple of (result, error) rather than raising exceptions
2. Explicit error propagation: Callers check for errors and propagate them up the call stack

3. Click exceptions at boundaries: At the CLI entry points, errors are converted to click.ClickException for user-friendly output
This pattern provides explicit control flow and facilitates testing by making error paths explicit and testable.
5.9.5 Resource Limits Configuration

The CLI supports configurable resource limits for user containers, enabling administrators to control resource consumption per user and
reduce the possibility of a single user making excessive use of limited computing resources. The default resource limits are:

Parameter Description Example Value
shm_size Shared memory size 512m

cpus CPU core allocation 2

mem_Limit Memory limit 2g

pids_Limit Maximum process count 100

-224/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.10 React Website

5.10 React Website

The website serves as the primary interface through which end-users interact with the DTaaS$ platform. The application is implemented as
a React single page web application, providing a modern and responsive user experience for digital twin management operations.

5.10.1 Architecture Overview

The client application follows a layered architecture pattern, separating concerns into distinct modules for routing, state management, UI
components, and backend communication. The application employs Redux Toolkit for centralized state management and implements the
Strategy pattern for backend abstraction, enabling support for multiple storage and execution backends.

Core Architecture Patterns

The backend communication layer implements interfaces, the builder pattern, and dependency injection to achieve backend-agnostic
operations. Each domain object (e.g., DigitalTwin, LibraryAsset) receives its backend dependency at construction time, allowing different
backends to be used interchangeably.

5.10.2 Package Structure

© Nt WN

10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
2
28
29
30
31
EY)
33
34
35
36
37
38
39
40
41
2
43
44
45
46
47
48
49
50
51
52
53
54

client/

—— src/

[—— index.tsx
{——— AppProvider.tsx
f—— routes.tsx
f—— components/

| |—— asset/

| f—— execution/
| F—— logbialog/
| —— route/

| L— tab/
f—— model/

| —— backend/

| |—— interfaces/

\ F—— gitlab/

| |—— state/

| — util/

f—— page/

| f—— Layout. tsx

| f——— LayoutPublic.tsx
| —— Menu. tsx

—— route/

f—— account/

|—— auth/

—— config/

f—— digitaltwins/
f—— Library/

—— workbench/

f—— store/

| store.ts

| F—— auth.slice.ts

| f—— menu.slice.ts

| F—— settings.slice.ts
| —— snackbar.slice.ts
f——util/

| |—— auth/

| F—— configltil.ts

| entil.ts

f—— preview/

f——— components/
—— route/

|—— store/
—— util/

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| —— database/
f—— test/
| f—— unit/
| f—— integration/
| F—— e2e/
| —— preview/
f—— public/
—— config/

f—— dev.js

f—— prod.js

L—— test.js

Application source code
Application entry point
Redux and theme providers
Route definitions
Reusable UI components
Asset-related components
Execution history components
Log display dialogs
Route-specific components
Tab navigation components
Domain models and backend layer
Backend abstraction layer
Interface definitions
GitLab implementation
Backend state slices
Backend utilities
Page layout components
Main authenticated layout
Public pages layout
Navigation menu
Feature route modules
User account management
Authentication flow
Configuration pages
Digital twin management
Library asset browsing
User workbench interface
Redux state management
Store configuration
Authentication state
Menu navigation state
Application settings
Notification state
Utility functions
Authentication utilities
Configuration helpers
Environment utilities

DevOps preview features (need refactoring)

Preview UI components
Preview routes
Preview state
Preview utilities
Static configuration data
Test suites
Unit tests (Jest)
Integration tests
End-to-end tests (Playwright)
Preview feature tests
Static assets
Build configurations
Development config
Production config
Test environment config

-225/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

5.10.3 Key Components

Backend Abstraction Layer

The model/backend/ directory implements a pluggable backend architecture:

Component
Backend
Instance
DigitalTwin
LibraryAsset

FileHandler

State Management

Purpose

Interface for server communication
Maintains backend connection state and logs
Domain model for digital twin operations
Domain model for library asset management

Handles file operations across backends

Redux slices manage application state:

Slice
auth.slice
menu.slice
settings.slice
snackbar.slice

digitalTwin.slice

Route Modules

Purpose

Authentication state and user session
Navigation menu visibility and selection
Application preferences and configuration
Toast notifications and alerts

Digital twin execution state

Feature modules organized by domain:

Module
digitaltwins/
Library/
workbench/

account/

Purpose

Create, execute, and monitor digital twins
Browse and manage reusable assets
Interactive user workspace interface

User profile and settings management

-226/249 -

5.10.3 Key Components

Copyright © 2022 - 2026 The INTO-CPS Association

5.11 Library Microservice

5.11 Library Microservice
The Library Microservice exposes workspace files via two principal mechanisms: (1) a GraphQL API and (2) an HTTP file server accessible
from web browsers. This service interfaces with the local file system and GitLab to provide uniform GitLab-compliant API access to files.

The microservice serves as a critical component of the DTaa$S platform, enabling both human users and digital twins to access reusable
assets stored in the platform's library structure.

ﬁrning

This microservice is still under heavy development. It is still not a good replacement for file server we are using now.

5.11.1 Architecture and Design

The microservice is built using NestJS framework with Apollo GraphQL. The architecture employs the Strategy pattern via a factory
service, enabling support for multiple file storage backends (local filesystem, GitLab). The GraphQL API provided by the library
microservice shall be compliant with the GitLab GraphQL service.

5.11.2 Package Structure

1 servers/Lib/

2 f—— src/ # Application source code

3 | f—— main.ts # Application entry point

4 | f|—— bootstrap.ts # NestJS bootstrap configuration
5 | f—— app.module.ts # Root application module

6 | f——— schema.gql # Auto-generated GraphQL schema
7 | —— types.ts # GraphQL type definitions

8 I f—— config/ # Configuration module

9 | | f—— config.module.ts # Configuration DI module

10 | | f—— config.service.ts # Configuration service

11 || F—— config.interface.ts # Configuration interface

12 | | F— config.model.ts # Configuration model

13 | | — util.ts # Configuration utilities

14 | f—— files/ # Files module (core functionality)
15 || F—— files.module.ts # Files DI module

16 | | f—— files.resolver.ts # GraphQL resolver

17 | | f|—— files-service.factory.ts # Backend factory

18 | | |—— interfaces/ # Service interfaces

19 || | —— files.service.interface.ts

20 | | f—— Llocal/ # Local filesystem backend

21 | | | f—— Llocal-files.module.ts

22 | | | —— Llocal-files.service.ts

23 I it/ # GitLab backend

w1 f—— git-files.module.ts

25 | | —— git-files.service.ts

26 | f—— enums/ # Enumeration definitions

27 | | —— config-mode.enum.ts # Backend mode enum

28 I —— cloudcmd/ # CloudCmd file browser integration
29 |—— test/ # Test suites

30 —— dist/ # Compiled output

5.11.3 Key Components
GraphQL Resolver

The FilesResolver class exposes two GraphQL queries:

Query Purpose
ListDirectory Returns directory contents (files and folders)
readFile Returns file content as raw text

-227/249 - Copyright © 2022 - 2026 The INTO-CPS Association

File Service Interface

The IFilesService interface defines the contract for all file backends:

interface IFilesService {

ListDirectory(path: string): Promise<Project>;
readFile(path: string): Promise<Project>;

1

2

3

4 getMode(): CONFIG_MODE
5 init(): Promise<any>;
6

}
Backend Implementations

Backend
LocalFilesService

GitFilesService

Factory Pattern

Purpose
Accesses files from local filesystem

Accesses files from GitLab repository

5.11.4 UML Diagrams

The FilesServiceFactory creates the appropriate backend service based on configuration, enabling runtime selection of the storage backend.

5.11.4 UML Diagrams
Class Diagram

classDiagram
class FilesResolver {
-filesService: IFilesService

+LlistDirectory(path: string): Promise<Project>
+readFile(path: string): Promise<Project>

}

class FilesServiceFactory {
-configService: ConfigService

-localFilesService: LocalFilesService

+create(): IFilesService

}

class LocalFilesService {
-configService: ConfigService

-getFileStats(fullPath: string, file: string): Promise<Project>
+LlistDirectory(path: string): Promise<Project>
+readFile(path: string): Promise<Project>

}

class ConfigService {

+get(propertyPath: string): any

class IFilesService{

ListDirectory(path: string): Promise<Project>
readFile(path: string): Promise<Project>

}

IFilesService <|-- FilesResolver: uses
IFilesService <|.. LocalFilesService: implements
IFilesService <|-- FilesServiceFactory: creates
ConfigService <|-- FilesServiceFactory: uses
ConfigService <|-- LocalFilesService: uses

Sequence Diagram

sequenceDiagram
actor Client
actor Traefik

box LightGreen Library Microservice

participant FR as FilesResolver

participant FSF as FilesServiceFactory

participant CS as ConfigService
participant IFS as IFilesService

participant LFS as LocalFilesService

end

participant FS as Local File System DB

- 228/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

Client ->> Traefik : HTTP request
Traefik ->> FR : GraphQL query
activate FR

FR ->> FSF : create()
activate FSF

FSF ->> (S : getConfiguration("MODE")
activate (S

CS -->> FSF : return configuration value
deactivate CS

alt MODE = Local
FSF ->> FR : return filesService (LFS)
deactivate FSF

FR ->> IFS : LlistDirectory(path) or readFile(path)
activate IFS

IFS ->> LFS : ListDirectory(path) or readFile(path)
activate LFS

LFS ->> (S : getConfiguration("LOCAL_PATH")
activate CS

CS -->> LFS : return local path
deactivate CS

LFS ->> FS : Access filesystem
alt Filesystem error
FS -->> LFS : Filesystem error
LFS ->> LFS : Throw new InternalServerErrorException
LFS -->> IFS : Error
else Successful file operation
FS -->> LFS : Return filesystem data
LFS ->> IFS : return Promise<Project>
end
deactivate LFS
activate IFS
end

alt Error thrown

IFS ->> FR : return Error

deactivate IFS

FR ->> Traefik : return Error

Traefik ->> Client : HTTP error response
else Successful operation

IFS ->> FR : return Promise<Project>
deactivate IFS

FR ->> Traefik : return Promise<Project>
Traefik ->> Client : HTTP response

end

deactivate FR

-229/249 -

5.11.4 UML Diagrams

Copyright © 2022 - 2026 The INTO-CPS Association

5.12 Runner Microservice

5.12 Runner Microservice

The Runner microservice provides script execution capabilities for digital twins within the DTaa$ platform. This service accepts HTTP

requests to execute pre-configured commands and returns execution status and logs to the caller.

5.12.1 Package Structure

© NG A WN =

1
12
13
14
15
16
17
18

20
21
22
23

servers/execution/runner/

f——src/ # Application source code

| f—— main.ts

| f—— app.module.ts

| f—— app.controller.ts
| f——— execa-manager.service.ts
| f—— execa-runner.ts

| —— queue.service.ts
| f—— runner-factory.service.ts
| [—— validation.pipe.ts
| f—— config/

|| F—— commander.ts
| | f—— config.interface.ts

| | f|—— configuration.service.
| | —— util.ts

| f— dto/

| | —— command.dto.ts

| —— interfaces/

| f—— command. interface.ts

| —— runner. interface.ts

Application entry point
Root NestJS module

REST API controller
Command execution manager
Command runner implementation
Command queue service
Runner instance factory
Request validation pipe
Configuration module

CLI argument parsing

Configuration interface
ts # Configuration service
Configuration utilities
Data transfer objects

Command request DTO

Interface definitions

Command types

Runner interface

EE T

f—— api/ # API documentation
|—— test/ # Test suites
—— dist/ # Compiled output

5.12.2 Architecture and Design

The microservice is built using NestJS framework and employs the execa library for command execution. The architecture implements a

command queue pattern for managing execution requests and a factory pattern for creating runner instances.

Core Components

classDiagram
class AppController {

}

-manager: ExecaManager
+getHistory(): ExecuteCommandDto[]
+newCommand(dto): void
+cmdStatus(): CommandStatus

class ExecaManager {

}

-commandQueue: Queue

-config: Config

+newCommand(name) : [boolean, Map
+checkStatus(): CommandStatus
+checkHistory(): ExecuteCommandDto[]

class Queue {

}

-queue: Command[]

+enqueue(command) : void
+checkHistory(): ExecuteCommandDto[]
+activeCommand(): Command

class RunnerFactory {

}

+create(command): Runner

class ExecaRunner {

}

-command: string
-stdout: string

-stderr: string

+run(): Promise~boolean~
+checkLogs(): Map

class Config {

-configValues: ConfigValues
+LloadConfig(options): void
+permitCommands(): string[]
+getPort(): number
+getlocation(): string

-230/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

5.12.3 Key Components

}

AppController --> ExecaManager : uses
ExecaManager --> Queue : uses
ExecaManager --> Config : uses

ExecaManager --> RunnerFactory : uses
RunnerFactory --> ExecaRunner : creates

5.12.3 Key Components
REST API Controller

The AppController exposes three endpoints:

Endpoint Method Purpose

/ POST Submit a new command for execution
/ GET Get status of the current command
/history GET Retrieve execution history

Execution Manager

The ExecaManager service orchestrates command execution:

1. Validates command against permitted commands list
2. Creates runner instance via factory
3. Queues command for execution

4. Returns execution logs and status

Command Queue

The Queue service maintains execution history and tracks the currently active command. Commands are stored with their execution status
(valid/invalid).

Runner Interface
The Runner interface defines the contract for command executors:

1 interface Runner {

2 run(): Promise<boolean>;

3 checkLogs(): Map<string, string>;
4}

Configuration

The service reads configuration from a YAML file specifying:

Setting Purpose

port HTTP server port

location Base directory for executable scripts
commands Whitelist of permitted command names

5.12.4 Security Considerations

The runner implements a whitelist-based security model where only commands explicitly listed in the configuration file may be executed.
This prevents arbitrary command execution attacks.

-231/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.13 DevOps Framework

5.13 DevOps Framework

5.13.1 Overview
Expectations From a DevOps Framework

The functional requirements of the system include the automation of pipelines and the management of Digital Twins (DTs) via Application
Programming Interface (API). Consequently, the framework was designed to facilitate the comprehensive automation of the DT lifecycle,
minimizing the necessity for manual intervention. The system must be capable of managing the dynamic configuration of pipelines,
utilizing variables that permit the customization of pipeline behavior according to the data provided by the user, such as the designation of
the DT.

Integration with GitLab is another fundamental requirement. The framework must be able to interact with GitLab to execute CI/CD
pipelines via API calls using Gitbeaker as a wrapper. Users must authenticate via GitLab's OAuth 2.0 mechanism, and the system must
automatically manage the authentication tokens and trigger tokens needed to start pipelines. Additionally, the system must automatically
retrieve key information from the user's GitLab repository, such as the list of available DTs.

High Level Architecture

We use a DevOps framework to enable interaction with the DTs via APIs calls, so that users can start, monitor and manage their DTs via
the web application.

The architectural design of the DevOps framework was intended to facilitate the management of DTs. It is based on two key elements:

* The GitLab CI/CD infrastructure, which employs a parent-child pipeline hierarchy. The objective of this infrastructure is to enable the
triggering of a pipeline of a specific DT by simply passing the necessary data as parameters, such as the name of the DT and the tag of
the runner that will execute the pipeline.

* Classes implemented in the code, which utilize Gitbeaker to realize the APIs required for interaction with DTs.

The component diagram below illustrates how the infrastructure consists of three main classes: DigitalTwin, LibraryAsset, and
GitlabInstance .

-232/249 - Copyright © 2022 - 2026 The INTO-CPS Association

GitLab CI/CD infrastructure

2]

Uise
Gitlablnstance @
DigitalTwin E LibraryAsset @
DTAssets gl LibraryManager gl
FileHandler @

5.13.1 Overview

The distinction between the DigitalTwin and LibraryAsset classes was necessary to separate the full management of a DT from an asset
visualized through the library. The LibraryAsset class provides a significantly reduced set of functionality compared to the DigitalTwin,

focusing only on asset visualization.

Intermediate classes were introduced to ensure a clear separation of file management responsibilities: DTAssets and LibraryManager . These
classes implement the necessary logic to mediate between a DigitalTwin or LibraryAsset and the FileHandler class. The FileHandler class has a
single responsibility: to make API calls to files via GitBeaker. This design allows for the separation of high-level logic from low-level file

operations.

The infrastructure requires that the DigitalTwin class and the LibraryAsset class include an instance of GitlabInstance . This composition
relationship emphasizes the dependency between these classes, where a DigitalTwin or a LibraryAsset instance cannot function
independently without a GitlabInstance . The GitlabInstance class provides the essential services required for interacting with GitLab,
including API integrations and pipeline management.

-233/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

5.13.1 Overview

The GitlabInstance class serves as the interface to the realized CI/CD infrastructure. By utilizing the GitLab class imported from GitBeaker
and initialized as its attribute, GitlabInstance facilitates the execution of pipelines and other CI/CD-related tasks. This architecture ensures
that the infrastructure remains modular and adheres to the principles of single responsibility and clear dependency management.

Gitbeaker

GitBeaker is a client library for Node.js that enables users to interact with the GitLab API. In particulay, gitbeaker/rest is a specific version
of the Gitbeaker package that allows users to submit requests to GitLab's REST API.

One of the most significant features of Gitbeaker is the provision of support for a range of authentication methods, including the use of
personal tokens and OAuth 2.0 keys. Gitbeaker provides a range of predefined methods for requesting data from the various GitLab APIs,
eliminating the need for users to manually construct HTTP requests, thus greatly simplifying the integration process with GitLab.

It automatically handles errors in HTTP requests (and provides meaningful error messages that help diagnose and resolve problems) and
is fully compatible with all of GitLab's REST APIs.

Ref: Vanessa Scherma, Design and implementation of an integrated DevOps framework for Digital Twins as a Service software platform,
Master's Degree Thesis, Politecnico Di Torino, 2024.

-234/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/jdalrymple/gitbeaker

5.13.2 GitLab CI/CD Infrastructure

5.13.2 GitLab CI/CD Infrastructure

Given that files in the Library are stored in a Git repository, the approach employed was that of GitLab's parent-child pipelines. In this
context, a parent pipeline initiates the execution of another pipeline within the same project, the latter of which is known as the child
pipeline. More about pipelines can be found in GitLab's documentation on CI/CD Pipelines.

CI/CD Pipelines
Continuous Integration (CI) and Continuous Deployment (CD) represent two key components of the DevOps methodology.

CI involves frequent integration of code changes into a common repository. Each integration triggers automated builds and tests that
permit the detection of issues at an early stage. This practice ensures that the changes made to the code are checked fast enough, reducing
the possibilities of integration problems and hence ensuring high-quality software.

CD automates the process of release, ensuring that code changes are automatically tested and prepared for deployment. Teams using CD
can deploy updates rapidly and reliably, improving the responsiveness and quality of software. Performed together, CI/CD automates the
whole delivery pipeline for software, increasing efficiency and reducing errors. They entirely eliminate, or significantly reduce, the
manual human input required for a code change to be moved from a commit to a production environment. The entire process of
compilation, testing (including unit, integration, and regression testing), deployment, and infrastructure provisioning is included.

CI/CD practices are explained in more detail in this article by GitLab.

A CI/CD pipeline is a series of automated processes that manage CI and CD of software. They are configured to run automatically, with no
need for manual intervention once activated.

GitLab is a single application for the entire DevOps lifecycle, which means it performs all of the basics required for CI/CD in one
environment. The documentation provided by GitLab was instrumental in enabling a comprehensive understanding of the CI/CD
pipelines.

Pipelines are composed of a number of essential components. Jobs delineate the specific tasks to be accomplished, while stages define the
sequence in which jobs are executed. In this way, stages ensure that each step takes place in the right order and make the pipeline more
efficient and consistent. In the event that all jobs within a stage are successfully completed, the pipeline will automatically proceed to the
subsequent stage. However, if any of the jobs fail, the flow is interrupted without proceeding.

When a pipeline is initiated, the jobs that have been defined within it are then distributed among the available runners.

GitLab runners are agents within the GitLab Runner application that execute the jobs in accordance with their configuration and the
available resources. They can be configured to operate on a variety of platforms, including virtual machines, containers, and physical
servers. They can also be managed locally or in a cloud environment.

We use this GitLab parent-child pipeline setup to trigger execution of digital twins stored in a user's GitLab repository.

.
Kote

The recommended practice is to modified these pipelines via the Digital Twins Preview Page.

Parent Pipeline

The parent pipeline was configured as a top-level element. There is a single stage called triggers, which is responsible for triggering other
child pipelines.

In the .gitlab-ci.yml file, triggers are managed for DTs inside the user repository. Each trigger is connected with one distinct DT and
becomes active when the corresponding value of the dTName variable is provided by the API call. The RunnerTag variable is used to specify a
custom runner tag that will execute each job in the DT's pipeline.

- 235/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/ee/ci/pipelines/
https://about.gitlab.com/topics/ci-cd/
https://docs.gitlab.com/ee/ci/pipelines/

5.13.2 GitLab CI/CD Infrastructure

Below is an explanation of the keywords used in the CI/CD pipeline configuration:

» Image: Specifies the Docker image, such as fedora:41, providing the environment for the pipeline execution.
« Stages: Defines phases in the pipeline, such as triggers, organizing tasks sequentially.

* Trigger: Initiates another pipeline or job, incorporating configurations from an external file.

¢ Include: Imports configurations from another file for modular pipeline setups.

* Rules: Sets conditions for job execution based on variables or states.

« If: A condition within rules specifying when a job should run based on the value of a variable.

* When: Specifies the timing of job execution, such as always .

* Variables: Defines dynamic variables, like RunnerTag, used in the pipeline.

Here is an example of such a YAML file that registers a trigger for a DT named mass-spring-damper :

1 image: fedora:41

2

3 stages:

4 - triggers

5|

6 trigger_mass-spring-damper:

7 stage: triggers

8 trigger:

9 include: digital_twins/mass-spring-damper/.gitlab-ci.yml
10 rules:

1 - if: '$DTName == "mass-spring-damper"'
12 when: always

13 variables:

14 RunnerTag: S$RunnerTag

Digital Twin Structure

The digital_twins folder contains DTs that have been pre-built by one or more users. The intention is that they should be sufficiently
flexible to be reconfigured as required for specific use cases.

Let us look at an example of such a configuration. The dtaas/user1 repository on gitlab.com contains the digital_twins directory with a
hello_world example. Its file structure looks like this:

hello_world/

f—— Lifecycle/

| F— clean

| F—— create

| —— execute

| —— terminate
f—— .gitlab-ci.yml

—— description.md

® NG A WN

The Llifecycle directory here contains four files - clean, create, execute and terminate , which are simple BASH scripts. These correspond to
stages in a digital twin's lifecycle.

-236/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://gitlab.com/dtaas/user1
https://www.gnu.org/software/bash/

5.13.2 GitLab CI/CD Infrastructure

Author DT Components (on or off platform)

Consolidate andtplore DT Components (like a marketplace)

Create / Configure new DT (like a Lego playground)

Execute one# Scenario Analysis
(with a click) (execute many DTs with a click)

Analyse (using data science tools)
Save(any of DT components)
Evolve

Terminate

Child Pipelines

To automate the lifecycle of DT, a child pipeline has been incorporated into its corresponding folder. Regardless of the image provided in
the parent pipeline, each child pipeline will use its own specified image specified in its YAML configuration or Ruby's default image.

The following are the explanations of the keywords used within the CI/CD child pipeline based on GitLah's CI/CD YAML syntax reference:

1. stage It defines the steps that happen in a pipeline sequentially, for example, create, execute and clean, to make sure that tasks occur in a
specific order.

2. Script It lists commands to be run at each step; for example, changing directories, modifying permissions, or running lifecycle scripts.

3. Tags It specifies which runner should run the jobs, thereby providing an additional control over where and how the jobs are run.

-237/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/ee/ci/yaml/

5.13.2 GitLab CI/CD Infrastructure

With the DT mass-spring-damper serving as a point of reference, the stages in question are designed to facilitate the creation, execution, and
termination of the DT simulation, as well as the cleaning and restoration of the environment to ensure its readiness for future executions.
Here is an example of a configuration that defines create, execute and clean as part of the child pipeline:

1 image: ubuntu:20.04

2

3 stages:

4 - create

5 - execute

6 - clean

7

8 create_mass-spring-damper:

9 stage: create

10 script:

11 - cd digital_twins/mass-spring-damper
12 - chmod +x Llifecycle/create
13 - Llifecycle/create

14 tags:

15 - SRunnerTag

16

17 execute_mass-spring-damper:

18 stage: execute

19 script:

20 - cd digital_twins/mass-spring-damper
21 - chmod +x Llifecycle/execute
22 - lifecycle/execute

23 tags:

24 - SRunnerTag

25

26 clean_mass-spring-damper:

27 stage: clean

28 script:

29 - cd digital_twins/mass-spring-damper
30 - chmod +x Llifecycle/terminate
31 - chmod +x Llifecycle/clean

32 - Lifecycle/terminate

33 tags:

34 - SRunnerTag

Ref: Vanessa Scherma, Design and implementation of an integrated DevOps framework for Digital Twins as a Service software platform,
Master's Degree Thesis, Politecnico Di Torino, 2024.

-238/249 - Copyright © 2022 - 2026 The INTO-CPS Association

> w N

5.13.3 API Calls

5.13.3 API Calls

A GitLab DevOps pipeline can be triggered via an API call using a pipeline trigger token which is created on the GitLab instance, with the
following values:

. <trigger_token>: The user GitLab trigger token.
. <digital_twin_name> : The name of the DT (e.g. mass-spring-damper).
. <runner_tag> : The specific tag of the GitLab runner that the user wants to use.

. <project_id>: The ID of the GitLab project, displayed in the project overview page.

The example given below sets the DTName variable to the desired DT name, the RunnerTag variable to the specified GitLab Runner tag, and
ensures the call will be executed in the main branch:

curl --request POST \
--form "token=<trigger_token>" \
--form ref=main \
--form "variables[DTName]=<digital_twin_name>" \
--form "variables[RunnerTag]=<runner_tag>" \
"https://maestro.cps.digit.au.dk/gitlab/api/v4/projects/<project_id>/trigger/pipeline"

(SN T NIV R

Ref: Vanessa Scherma, Design and implementation of an integrated DevOps framework for Digital Twins as a Service software platform,
Master's Degree Thesis, Politecnico Di Torino, 2024.

-239/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://docs.gitlab.com/ee/ci/triggers/

5.13.4 Implemented Classes

5.13.4 Implemented Classes

In order to facilitate the management of the lifecycle of DTs via the web application interfaces, it was necessary to develop specific code
within the project client. The code was designed to facilitate efficient API calls through the use of Gitbeaker as a wrapper, as this approach
simplifies interactions with GitLab’s REST API and reduces the complexity of the project code.

The APIs have been integrated into the front-end by wiring up API endpoints to front-end components, ensuring a seamless data flow. Unit
and integration testing was done to ensure the coverage of all functional requirements and solve all problems regarding data consistency,
performance, or user experience.

Given below is our implementation of these classes in TypeScript:

1 class GitlabInstance {
2 async init();
3 async getProjectId();
4 async getTriggerToken(projectId: number);
5 async getDTSubfolders(projectId: number);
6 async getLibrarySubfolders(
7 projectId: number,
8 type: string,
9 isPrivate: boolean,
10);
11 getExecutionlogs();
12 async getPipelineJobs(
13 projectId: number,
14 pipelineId: number,
15);
16 async getJobTrace(projectId: number, jobId: number);
17 async getPipelineStatus(
18 projectId: number,
19 pipelineId: number,
20);
2}
22
23 class DigitalTwin {
24 async getDescription();
25 async getFullDescription();
26 private async triggerPipeline();
27 async execute();
28 async stop(projectId: number, pipeline: string);
29 async create(
30 files: FileState[],
31 cartAssets: LibraryAsset[],
32 LibraryFiles: LibraryConfigFile[],
33);
34 async delete();
35 async getDescriptionFiles();
36 async getConfigFiles();
37 async getLifecycleFiles();
38 async prepareAllAssetFiles(
39 cartAssets: LibraryAsset[],
40 LibraryFiles: LibraryConfigFile[],
41)3
42 async getAssetFiles();
43}
44
45 class LibraryAsset {
46 async getDescription();
47 async getFullDescription();
48 async getConfigFiles();
49 1}
Gitlablnstance

The GitlabInstance class was created in order to manage the APIs and information related to the GitLab profile, the project, and the user-
specific data stored in their account.

The username and the token required to instantiate the Gitbeaker Gitlab component, which is required for making the API calls, are
retrieved from the session storage, taking the access_token of the user already logged into the DTaaS platform.

The initialisation of the GitlabInstance object is concluded with the execution of the init() method, which enables the retrieval and storage
of the projectId and triggerToken attributes. The projectld is a unique identifier for projects in GitLab and it is essential for subsequent API
calls. For example, it is passed to the method that retrieves a trigger token, which is used to trigger CI/CD pipelines in GitLab.

The objective of the getdTSubfolders method was to retrieve the names and corresponding descriptions of the DTs of the user, so that these
could be shown at the front-end interface. This approach would obviate the user from having to input the name of a DT; hence, saving the

- 240/249 - Copyright © 2022 - 2026 The INTO-CPS Association

5.13.4 Implemented Classes

user from possible error and inefficiencies arising from manual input. The user interface makes it easier for the user to deal with DTs by
automatizing their selection and manages them more accurately. This implementation also eliminates the necessity for manual input from
users for the access token and the username, which are automatically provided via the GitLab OAuth 2.0 login.

Furthermore, logs maintained in the GitlabInstance class improve awareness and transparency over the operations conducted. The final
three methods are employed in conjunction to oversee the execution of a DT. In particular, individual logs are saved for each job in the
pipeline, and the status of the latter is monitored so that, once the entire pipeline is complete, the results can be displayed in detail within
the user interface. In this way, all statuses of each operation are logged for better debugging and performance analysis, including possible
errors. Having trace logs exposed to the user means troubleshooting will be more effective and insight into execution and management of
DTs will be gained, improving system reliability and user confidence.

DigitalTwin
The DigitalTwin class was created in order to manage the APIs and information related to a specific DT.

The creation of a DigitalTwin object requires a pre-existing GitlabInstance to be associated with the object. It was determined that
matching a different GitlabInstance for each DigitalTwin would be the optimal approach to ensure the maintenance of independence
between the various DTs. The api attribute of GitlabInstance facilitates the execution of Gitbeaker APIs pertinent to the DT.

The class allows a pipeline to be started and stopped, thus giving the user full control of the execution. The execute() method uses the
previous methods internally. This approach ensures that there are no errors due to missing design information during the execution of the
pipeline. Responsibilities have been divided into smaller methods in order to make the code more modular, facilitating debugging and
testing. In both execute() and stop(), the status of operations executed on the DT is monitored, keeping track of them via the logs attribute
of GitlabInstance. Errors are identified and tracked, providing a complete view and the ability to monitor performance.

The descriptionFiles, LlifecycleFiles and configFiles attributes are used to keep track of the files within the corresponding GitLab folder of
the DT, thus enabling the read and modify features.

The create() method enables the creation of a DT and saves all its files in the user’s corresponding GitLab folder. Additionally, if the DT is
configured as common, it is also added to GitLab’s shared folder, making it part of the Library and accessible to other users.

Similarly, the delete() method removes a DT from GitLab. If the DT was part of the Library, it is also removed from the shared folder.

A crucial aspect of these two methods is their integration with the DevOps infrastructure. When a DT is created or deleted, the .gitlab-
ci.yml file of the parent pipeline is updated to add or remove the trigger_DTName section associated with the DT. This ensures that a user-
created DT can be executed via the web interface without requiring manual updates to pipeline configuration files on GitLab. Instead,
these files are automatically updated, providing an effortless user experience and maintaining alignment with the infrastructure.

LibraryAsset
The LibraryAsset class was created in order to manage the APIs and information related to a specific library asset.

It is similar to the DigitalTwin class, but contains only the methods required to display files. This focused design reflects its limited scope
and ensures simplicity and clarity for use cases involving the library.

Ref: Vanessa Scherma, Design and implementation of an integrated DevOps framework for Digital Twins as a Service software platform,
Master's Degree Thesis, Politecnico Di Torino, 2024.

-241/249 - Copyright © 2022 - 2026 The INTO-CPS Association

6. Known Issues in the Software

6. Known Issues in the Software

If a bug is discovered, an issue should be opened

6.1 Third-Party Software

The explanation given below corresponds to bugs that may be encountered from third party software included in the DTaaS platform.
Known issues are listed below.

6.2 GitLab

The GitLab OAuth 2.0 authorization service does not have a way to sign out of a third-party application. Even if a user signs out of the
DTaasS platform, GitLab still shows the user as signed in. The next time the sign in button is clicked on the the DTaaS$ platform page, the
login page is not displayed. Instead the user is directly taken to the Library page. Therefore, the browser window should be closed after
use. Another way to overcome this limitation is to open the GitLab instance (https://gitlab.foo.com) and sign out from there. Thus the user
needs to sign out of two places, namely the DTaaS$ platform and GitLab, in order to completely exit the the DTaa$ platform.

-242/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/issues/new

7. Thanks

7. Thanks

7.1 Funding Sources

This project has been funded by the following projects.

* Security for the Digital Twin as a Service Platform - a project sponsored by Thomas B. Thriges Foundation

* CP-SENS (Cyber-Physical Sensing for Machinery and Structures) - a Grand Solution project funded by the Innovation Fund Denmark

under the grant agreement 2081-00006B.

* The DIGITbrain (Digital Twins for Manufacturing SMEs) - a European Union’s Horizon 2020 research and innovation program under

grant agreement No 952071.

* Digital Twins for Cyber-Physical Systems (DiT4CPS) - a project sponsored by the Grundfos Foundation.

7.2 Developers

Please see the list of contributors on code contributors

7.3 Example Contributors

Example Name

Mass Spring Damper

Water Tank Fault Injection

Water Tank Model Swap

Desktop Robotti with RabbitMQ

Water Treatment Plant and OPC-UA

Three Water Tanks with DT Manager Framework
Flex-Cell with Two Industrial Robots

Incubator

Firefighters in Emergency Environments

Mass Spring Damper with NuRV Runtime Monitor
Incubator with NuRV Runtime Monitor

Incubator with NuRV Runtime Monitor Service

Water Tank Fault Injection with NuRV Runtime Monitor
Incubator Co-Simulation with NuRV Runtime Monitor FMU
Incubator with NuRV Runtime Monitor FMU as Service

Incubator with NuRV Runtime Monitor as Service

7.4 Documentation

Contributors

Prasad Talasila

Henrik Ejersbo and Mirgita Frasheri

Henrik Ejersho and Mirgita Frasheri

Mirgita Frasheri

Lucia Royo and Alejandro Labarias

Santiago Gil Arboleda

Santiago Gil Arboleda

Morten Haahr Kristensen

Lars Vosteen and Hannes Iven

Alberto Bonizzi

Alberto Bonizzi and Morten Haahr Kristensen
Valdemar Tang

Alberto Bonizzi

Morten Haahr Kristensen

Valdemar Tang and Morten Haahr Kristensen

Morten Haahr Kristensen and Valdemar Tang

1. Talasila, P, Gomes, C., Mikkelsen, P. H., Arboleda, S. G., Kamburjan, E., & Larsen, P. G. (2023). Digital Twin as a Service (DTaaS): A Platform for

Digital Twin Developers and Users arXiv preprint arXiv:2305.07244.

- 243/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/INTO-CPS-Association/DTaaS/graphs/contributors
https://arxiv.org/abs/2305.07244

7.4 Documentation

2. Astitva Sehgal for developer and example documentation.

3. Tanusree Roy and Farshid Naseri for asking interesting questions that ended up in FAQs.

- 244/249 - Copyright © 2022 - 2026 The INTO-CPS Association

8. License

8. License

8.1 License

--- Start of Definition of INTO-CPS Association Public License ---
/*

» This file is part of the INTO-CPS Association.

* Copyright (c) 2017-CurrentYear, INTO-CPS Association (ICA),

* c/o Peter Gorm Larsen, Aarhus University, Department of Engineering,

* Finlandsgade 22, 8200 Aarhus N, Denmark.

¢ All rights reserved.

* THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR
» THIS INTO-CPS ASSOCIATION PUBLIC LICENSE (ICAPL) VERSION 1.0.

* ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM CONSTITUTES
* RECIPIENT'S ACCEPTANCE OF THE INTO-CPS ASSOCIATION PUBLIC LICENSE OR
* THE GPL VERSION 3, ACCORDING TO RECIPIENTS CHOICE.

» The INTO-CPS tool suite software and the INTO-CPS Association

* Public License (ICAPL) are obtained from the INTO-CPS Association, either

« from the above address, from the URLSs: http://www.into-cps.org or

« in the INTO-CPS tool suite distribution.

* GNU version 3 is obtained from:

* http://www.gnu.org/copyleft/gpl.html.

* This program is distributed WITHOUT ANY WARRANTY; without

* even the implied warranty of MERCHANTABILITY or FITNESS

* FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET FORTH

* IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF

* THE INTO-CPS ASSOCIATION PUBLIC LICENSE.

* See the full ICAPL conditions for more details.

*

--- End of INTO-CPS Association Public License Header ---

The ICAPL is a public license for the INTO-CPS tool suite with three modes/alternatives (GPL, ICA-Internal-EPL, ICA-External-EPL) for use

and redistribution, in source and/or binary/object-code form:

* GPL. Any party (member or non-member of the INTO-CPS Association) may use and redistribute INTO-CPS tool suite under GPL version

3.

* Silver Level members of the INTO-CPS Association may also use and redistribute the INTO-CPS tool suite under ICA-Internal-EPL

conditions.

* Gold Level members of the INTO-CPS Association may also use and redistribute The INTO-CPS tool suite under ICA-Internal-EPL or ICA-

External-EPL conditions.

- 245/249 -

Copyright © 2022 - 2026 The INTO-CPS Association

http://www.into-cps.org
http://www.gnu.org/copyleft/gpl.html

8.1 License

Definitions of the INTO-CPS Association Public license modes:

* GPL = GPL version 3.

* ICA-Internal-EPL = These INTO-CPS Association Public license conditions together with Internally restricted EPL, i.e., EPL version 1.0
with the Additional Condition that use and redistribution by a member of the INTO-CPS Association is only allowed within the INTO-CPS
Association member's own organization (i.e., its own legal entity), or for a member of the INTO-CPS Association paying a membership
fee corresponding to the size of the organization including all its affiliates, use and redistribution is allowed within/between its
affiliates.

* ICA-External-EPL = These INTO-CPS Association Public license conditions together with Externally restricted EPL, i.e., EPL version 1.0
with the Additional Condition that use and redistribution by a member of the INTO-CPS Association, or by a Licensed Third Party
Distributor having a redistribution agreement with that member, to parties external to the INTO-CPS Association member’s own
organization (i.e., its own legal entity) is only allowed in binary/object-code form, except the case of redistribution to other members the
INTO-CPS Association to which source is also allowed to be distributed.

[This has the consequence that an external party who wishes to use the INTO-CPS Association in source form together with its own
proprietary software in all cases must be a member of the INTO-CPS Association].

In all cases of usage and redistribution by recipients, the following conditions also apply:

a) Redistributions of source code must retain the above copyright notice, all definitions, and conditions. It is sufficient if the ICAPL Header
is present in each source file, if the full ICAPL is available in a prominent and easily located place in the redistribution.

b) Redistributions in binary/object-code form must reproduce the above copyright notice, all definitions, and conditions. It is sufficient if
the ICAPL Header and the location in the redistribution of the full ICAPL are present in the documentation and/or other materials
provided with the redistribution, if the full ICAPL is available in a prominent and easily located place in the redistribution.

¢) A recipient must clearly indicate its chosen usage mode of ICAPL, in accompanying documentation and in a text file ICA-USAGE-
MODE.txt, provided with the distribution.

d) Contributor(s) making a Contribution to the INTO-CPS Association thereby also makes a Transfer of Contribution Copyright. In return,
upon the effective date of the transfer, ICA grants the Contributor(s) a Contribution License of the Contribution. ICA has the right to accept
or refuse Contributions.

Definitions:
"Subsidiary license conditions" means:

The additional license conditions depending on the by the recipient chosen mode of ICAPL, defined by GPL version 3.0 for GPL, and by EPL
for ICA-Internal-EPL and ICA-External-EPL.

"ICAPL" means:

INTO-CPS Association Public License version 1.0, i.e., the license defined here (the text between "--- Start of Definition of INTO-CPS
Association Public License " and "--- End of Definition of INTO-CPS Association Public License ---", or later versions thereof.

"ICAPL Header" means:

INTO-CPS Association Public License Header version 1.2, i.e., the text between "-- Start of Definition of INTO-CPS Association Public
License " and "--- End of INTO-CPS Association Public License Header --, or later versions thereof.

"Contribution” means:
a) in the case of the initial Contributor, the initial code and documentation distributed under ICAPL, and
b) in the case of each subsequent Contributor: i) changes to the INTO-CPS tool suite, and ii) additions to the INTO-CPS tool suite;

where such changes and/or additions to the INTO-CPS tool suite originate from and are distributed by that particular Contributor. A
Contribution 'originates' from a Contributor if it was added to the INTO-CPS tool suite by such Contributor itself or anyone acting on such
Contributor's behalf.

For Contributors licensing the INTO-CPS tool suite under ICA-Internal-EPL or ICA-External-EPL conditions, the following conditions also
hold:

- 246/249 - Copyright © 2022 - 2026 The INTO-CPS Association

8.1 License

Contributions do not include additions to the distributed Program which: (i) are separate modules of software distributed in conjunction
with the INTO-CPS tool suite under their own license agreement, (i) are separate modules which are not derivative works of the INTO-CPS
tool suite, and (iii) are separate modules of software distributed in conjunction with the INTO-CPS tool suite under their own license
agreement where these separate modules are merged with (weaved together with) modules of The INTO-CPS tool suite to form new
modules that are distributed as object code or source code under their own license agreement, as allowed under the Additional Condition
of internal distribution according to ICA-Internal-EPL and/or Additional Condition for external distribution according to ICA-External-EPL.

"Transfer of Contribution Copyright" means that the Contributors of a Contribution transfer the ownership and the copyright of the
Contribution to the INTO-CPS Association, the INTO-CPS Association Copyright owner, for inclusion in the INTO-CPS tool suite. The transfer
takes place upon the effective date when the Contribution is made available on the INTO-CPS Association web site under ICAPL, by such
Contributors themselves or anyone acting on such Contributors' behalf. The transfer is free of charge. If the Contributors or the INTO-CPS
Association so wish, an optional Copyright transfer agreement can be signed between the INTO-CPS Association and the Contributors.

"Contribution License" means a license from the INTO-CPS Association to the Contributors of the Contribution, effective on the date of the
Transfer of Contribution Copyright, where the INTO-CPS Association grants the Contributors a non-exclusive, world-wide, transferable,
free of charge, perpetual license, including sublicensing rights, to use, have used, modify, have modified, reproduce and or have
reproduced the contributed material, for business and other purposes, including but not limited to evaluation, development, testing,
integration and merging with other software and distribution. The warranty and liability disclaimers of ICAPL apply to this license.

"Contributor" means any person or entity that distributes (part of) the INTO-CPS tool chain.

"The Program" means the Contributions distributed in accordance with ICAPL.

"The INTO-CPS tool chain" means the Contributions distributed in accordance with ICAPL.

"Recipient” means anyone who receives the INTO-CPS tool chain under ICAPL, including all Contributors.

"Licensed Third Party Distributor" means a reseller/distributor having signed a redistribution/resale agreement in accordance with ICAPL
and the INTO-CPS Association Bylaws, with a Gold Level organizational member which is not an Affiliate of the reseller/distributor, for
distributing a product containing part(s) of the INTO-CPS tool suite. The Licensed Third Party Distributor shall only be allowed further
redistribution to other resellers if the Gold Level member is granting such a right to it in the redistribution/resale agreement between the
Gold Level member and the Licensed Third Party Distributor.

"Affiliate" shall mean any legal entity, directly or indirectly, through one or more intermediaries, controlling or controlled by or under
common control with any other legal entity, as the case may be. For purposes of this definition, the term "control" (including the terms
"controlling," "
the direction of the management and policies of a legal entity, whether through the ownership of voting securities, by contract or

otherwise.

controlled by" and "under common control with") means the possession, direct or indirect, of the power to direct or cause

NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF ICAPL, THE INTO-CPS
ASSOCIATION IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED
INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of using and distributing
the INTO-CPS tool suite and assumes all risks associated with its exercise of rights under ICAPL , including but not limited to the risks and
costs of program errors, compliance with applicable laws, damage to or loss of data, programs or equipment, and unavailability or
interruption of operations.

DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF ICAPL, NEITHER RECIPIENT
NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OR DISTRIBUTION OF THE INTO-CPS TOOL SUITE OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

A Contributor licensing the INTO-CPS tool suite under ICA-Internal-EPL or ICA-External-EPL may choose to distribute (parts of) the INTO-
CPS tool suite in object code form under its own license agreement, provided that:

- 247/249 - Copyright © 2022 - 2026 The INTO-CPS Association

8.1 License

a) it complies with the terms and conditions of ICAPL; or for the case of redistribution of the INTO-CPS tool suite together with proprietary
code it is a dual license where the INTO-CPS tool suite parts are distributed under ICAPL compatible conditions and the proprietary code is
distributed under proprietary license conditions; and

b) its license agreement: i) effectively disclaims on behalf of all Contributors all warranties and conditions, express and implied, including
warranties or conditions of title and non-infringement, and implied warranties or conditions of merchantability and fitness for a
particular purpose; ii) effectively excludes on behalf of all Contributors all liability for damages, including direct, indirect, special,
incidental and consequential damages, such as lost profits; iii) states that any provisions which differ from ICAPL are offered by that
Contributor alone and not by any other party; and iv) states from where the source code for the INTO-CPS tool suite is available, and
informs licensees how to obtain it in a reasonable manner on or through a medium customarily used for software exchange.

When the INTO-CPS tool suite is made available in source code form:

a) it must be made available under ICAPL; and

b) a copy of ICAPL must be included with each copy of the INTO-CPS tool suite.

c) a copy of the subsidiary license associated with the selected mode of ICAPL must be included with each copy of the INTO-CPS tool suite.
Contributors may not remove or alter any copyright notices contained within The INTO-CPS tool suite.

If there is a conflict between ICAPL and the subsidiary license conditions, ICAPL has priority.

This Agreement is governed by the laws of Denmark. The place of jurisdiction for all disagreements related to this Agreement, is Aarhus,
Denmark.

The EPL 1.0 license definition has been obtained from: http://www.eclipse.org/legal/epl-v10.html. It is also reproduced in the INTO-CPS
distribution.

The GPL Version 3 license definition has been obtained from http://www.gnu.org/copyleft/gpl.html. It is also reproduced in the INTO-CPS
distribution.

--- End of Definition of INTO-CPS Association Public License ---

- 248/249 - Copyright © 2022 - 2026 The INTO-CPS Association

http://www.eclipse.org/legal/epl-v10.html
http://www.gnu.org/copyleft/gpl.html

8.2 Third Party Software

8.2 Third Party Software

The DTaaS platform utilizes numerous third-party software components. These software components have their own licenses.

8.2.1 User Installations

The software included with the DTaa$ installation scripts is listed below:

Software Package Usage License

Docker CE mandatory Apache 2.0 License

ml-workspace-minimal mandatory Apache 2.0 License

Node]JS mandatory Custom - Modified MIT

npm mandatory Artistic License 2.0

serve mandatory MIT

Treefik mandatory MIT License

Yarn mandatory BSD 2-Clause License

Eclipse Mosquitto optional Eclipse Public License-2.0

GitLab CE optional MIT License

Grafana optional GNU Affero General Public (AGPL) License v3.0
InfluxDB optional Apache 2.0 License, MIT License

Mongodb optional AGPL License and Server Side Public License (SSPL) v1
RabbitMQ optional Mozilla Public License

Telegraf v1.28 optional MIT License

ThingsBoard optional PostgreSQL License

8.2.2 Development Environments

In addition to all software included in user installations, the DTaaS development environments may use the following additional software
packages.

Software Package Usage License

Material for mkdocs mandatory MIT License

Jupyter Lab optional BSD 3-Clause License
Microk8s v1.27 optional Apache 2.0 License

8.2.3 Package Dependencies

There are specific software packages included in the development of client, library microservice and runner microservice. These packages
can be seen in the package.json file of the matching directories.

The plugins of material for mkdocs might have their own licenses. The list of plugins used are in requirements.txt file.

- 249/249 - Copyright © 2022 - 2026 The INTO-CPS Association

https://github.com/moby/moby
https://github.com/ml-tooling/ml-workspace
https://nodejs.org/en
https://github.com/nodejs/node/blob/main/LICENSE
https://npmjs.com
https://github.com/vercel/serve
https://github.com/traefik/traefik
https://yarnpkg.com/
https://github.com/eclipse/mosquitto
https://docs.gitlab.com/
https://github.com/grafana/grafana
https://github.com/influxdata/influxdb
https://github.com/mongodb/mongo
https://github.com/rabbitmq/rabbitmq-server
https://github.com/influxdata/telegraf
https://github.com/thingsboard/thingsboard
https://github.com/squidfunk/mkdocs-material
https://github.com/jupyterlab/jupyterlab
https://github.com/canonical/microk8s

	Digital Twin as a Service (DTaaS)
	1. What is the DTaaS Platform?
	1.1 License
	1.2 References

	2. User
	2.1 DTaaS for Users
	2.1.1 User Guide
	2.1.2 Motivation
	2.1.3 Existing Approaches
	2.1.4 Our Approach
	2.1.5 References

	2.2 Overview
	2.2.1 Advantages
	2.2.2 Software Features
	2.2.3 References

	2.3 Website
	2.3.1 DTaaS Website Screenshots
	Visit the DTaaS Installation
	Redirected to Authorization Provider
	Permit DTaaS Server to Use GitLab
	Permit DTaaS Website to Use GitLab
	Check Website Access
	Menu Items
	Library Page
	Digital Twins Page
	Workbench
	Library Preview Page

	Digital Twins Preview Page
	Create Tab
	Manage Tab
	Execute Tab

	Finally logout

	2.3.2 Settings
	⚙️ Changing Settings
	Group Name
	Common Library Project name
	DT Directory
	Branch Name
	Runner Tag

	💾 Saving and Resetting your changes
	💭 Summary

	2.4 Reusable Assets
	2.4.1 Reusable Assets
	Kinds of Reusable Assets
	Data
	Models
	Tools
	Functions
	Digital Twins

	File System Structure
	Upload Assets
	References

	2.4.2 Library Microservice
	Application Programming Interface (API)
	HTTP protocol
	GraphQL protocol
	Provide list of contents for a directory
	GraphQL query for list of contents
	GraphQL response for list of contents
	HTTP request for list of contents
	HTTP response for list of contents

	Fetch a file from the available files
	GraphQL query for fetch a file
	GraphQL response for fetch a file
	HTTP request for fetch a file
	HTTP response for fetch a file

	2.4.3 Reusable Assets and DevOps

	2.5 Digital Twins
	2.5.1 Create a Digital Twin
	Example

	2.5.2 Digital Twin Lifecycle
	Lifecycle Phases
	Example Lifecycle Scripts
	References

	2.5.3 DevOps Preview
	Digital Twin File Structure in GitLab
	Digital Twin Structure

	Digital Twins and DevOps
	DT Lifecycle
	Create Tab
	Manage Tab
	Execute Tab

	Setting Allowed Values
	Runner Tag
	Branch
	Group name
	Common Library Project name
	DT directory
	🧯 Troubleshooting
	💭 Summary

	Capabilities
	⚙️ Settings
	⏳ Concurrent Execution
	Concurrent Execution Across Different Runners

	🧩 Implementing Backends
	💭 Summary

	Running Multiple Digital Twins at the Same Time
	⏯️ Running Digital Twins
	Running Multiple Twins

	🗃️ The Execution Log
	🔧 Changing Runners
	💭 Summary

	2.6 Working with GitLab
	2.6.1 Preparation
	2.6.2 Git commands
	2.6.3 Library Assets
	2.6.4 Next Steps

	2.7 Runner
	2.7.1 Install
	NPM Registry
	Github Registry

	2.7.2 Configure
	2.7.3 Create Commands
	2.7.4 Use
	Application Programming Interface (API)
	POST Request to /
	GET Request to /
	GET Request to /history

	2.8 Examples
	2.8.1 DTaaS Examples
	Copy Examples
	Example List

	2.8.2 Mass Spring Damper
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Examine the Results

	Terminate phase

	References

	2.8.3 Water Tank Fault Injection
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.4 Water Tank Model Swap
	Overview
	Example Structure
	Configuration of assets
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.5 Desktop Robotti with RabbitMQ
	Overview
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Examine the results

	Terminate phase

	References

	2.8.6 Waste Water Plant with OPC-UA
	Introduction
	Physical Twin Overview
	Digital Twin Overview
	Digital Twin Configuration
	Input Data Variables
	DT Config

	Lifecycle Phases
	Run the example
	Install
	Create
	Execute
	Clean

	References
	Acknowledgements

	2.8.7 Three-Tank System Digital Twin
	Overview
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Terminate
	Clean

	Examining the results
	References

	2.8.8 Flex Cell Digital Twin with Two Industrial Robots
	Overview
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Prepare
	Execute
	Save
	Analyze
	Terminate
	Clean

	Examining the Results
	References

	2.8.9 Incubator Digital Twin
	Overview
	Digital Twin Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Clean

	Examining the results
	References

	2.8.10 Firefighter Mission in a Burning Building
	Physical Twin Overview
	Digital Twin Overview
	Quick Check
	Digital Twin Configuration

	Lifecycle Phases
	Run the example
	Install
	Create
	Exceute
	Examine the Results
	Terminate
	Clean

	2.8.11 Mass Spring Damper with NuRV Runtime Monitor
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.12 Water Tank Fault Injection with NuRV Runtime Monitor
	Overview
	Example Diagram
	Example Structure
	Digital Twin Configuration
	Lifecycle Phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.13 Incubator Co-Simulation Digital Twin validation with NuRV Monitor
	Overview
	Simulated scenario
	Example structure
	Digital Twin Configuration
	Lifecycle phases
	Run the example
	Create
	Execute
	Analyze phase
	Examine the results

	Terminate phase

	References

	2.8.14 Incubator Digital Twin with NuRV monitoring service
	Overview
	Simulated scenario
	Example structure
	Digital Twin Configuration
	Lifecycle phases
	Running the example
	References

	2.8.15 Incubator Digital Twin with NuRV FMU Monitoring Service
	Overview
	Simulated scenario
	Example structure
	Digital Twin Configuration
	Lifecycle phases
	Running the example
	References

	3. Admin
	3.1 Install
	3.1.1 Overview
	Install
	Administer

	3.1.2 Installation Steps
	Complete the DTaaS Platform
	Setup Authorization
	Configure Components
	Install

	Independent Packages

	3.1.3 Requirements
	OAuth 2.0 Provider
	Domain name

	3.1.4 Authorization
	OAuth 2.0 for React Client
	OAuth 2.0 for Traefik Gateway
	Development Environment
	Configure Authorization Rules for Traefik Forward-Auth
	Public Path Without Authorization
	Common to All Users
	Selective Access

	User management
	Limitation

	3.1.5 Configuration
	Configure Client Website
	Configure Library Microservice
	Operation Modes
	git mode

	3.1.6 Docker
	Install DTaaS on localhost
	Design
	Requirements
	Download Package
	Configuration
	Docker Compose
	Create User Workspace

	Run
	Use
	Limitations
	References

	Install DTaaS on localhost with GitLab Integration
	Design
	Requirements
	Download Package
	Configure
	Create User Workspace
	Obtain TLS / HTTPS Certificate
	Add TLS Certificates to Traefik
	Docker Compose

	Run
	Start DTaaS to Integrate GitLab
	Start GitLab
	Register OAuth 2.0 Application
	Update Client Website Configuration
	Restart DTaaS Client Website

	Use
	Limitations
	Docker Help
	References

	Install DTaaS on a Production Server
	Design
	Requirements
	Docker with Compose Plugin
	Domain name
	TLS / HTTPS Certificate (Optional)
	OAuth 2.0 Provider
	User Accounts
	OAuth 2.0 Application Registration

	Download Package
	Configuration
	Docker Compose
	Website Client
	Create User Workspace
	Configure Authorization Rules for Backend Authorization

	Access Rights Over Files
	Add TLS Certificates (Optional)

	Run
	Over HTTP
	Over HTTPS

	Use
	Adding a new user

	References

	3.1.7 Vagrant
	DTaaS Vagrant Box
	References

	DTaaS on Single Vagrant Machine
	Create Base Vagrant Box
	Target Installation Setup
	Configure Server Settings
	Installation Steps
	References

	DTaaS on Two Vagrant Machines
	Create Base Vagrant Box
	Target Installation Setup
	Configure Server Settings
	Installation Steps
	Launch DTaaS Platform Default Services
	Install DTaaS Platform

	References

	3.1.8 Platform Services
	DTaaS Services CLI
	Features
	Installation
	Prerequisites
	Install from Wheel Package

	Quick Start
	Usage
	Service Setup
	Service Management
	User Account Management

	Commands Reference
	dtaas-services generate-project
	dtaas-services setup
	dtaas-services start
	dtaas-services stop
	dtaas-services restart
	dtaas-services remove
	dtaas-services status
	dtaas-services user add

	Troubleshooting
	Permission Issues (Linux/macOS)
	Docker Connection Issues

	Platform Services
	Pre-requisites
	Directory and File Structure
	Download Package
	Create Common Config
	Install PostgreSQL and ThingsBoard
	Configure
	Install
	Add New User Accounts for ThingsBoard
	Troubleshooting

	Installation Steps for Other Services
	Run Install Script

	Use
	New User Accounts

	3.2 Integrated Gitlab
	3.2.1 Local GitLab Instance
	Design
	Download Package
	Configure and Install
	Run
	Post-install Configuration

	Use
	Create Users

	Pending Tasks

	3.2.2 GitLab Integration Guide
	Integration Steps
	1. Set up the DTaaS server over HTTPS
	2. Set up the GitLab Instance
	3. Create Users
	4. Create OAuth 2.0 Tokens in GitLab
	5. Use Valid OAuth 2.0 Application Tokens

	Restart Services
	Localhost Installation
	Production Server Installation

	Post Setup Usage
	Federation of DTaaS Installations

	3.2.3 Gitlab Runner
	GitLab Runner Integration
	Prerequisites
	Runner Scopes
	Obtaining A Registration Token
	Configuring the Runner
	Start the GitLab Runner
	Pipeline Trigger Token

	Setting up GitLab Runners with Docker on Windows for DTaaS
	Step-by-Step Setup Process
	1. Install GitLab Runner
	2. Getting a token
	3. Register Your Runner for DTaaS
	4. Configure Your config.toml
	6. Restart the Runner

	Verifying Your Setup
	Understanding the DTaaS Project Setup
	Common Errors
	Conclusion

	3.3 DTaaS Command Line Interface
	3.3.1 Prerequisite
	3.3.2 Installation
	3.3.3 Usage
	Configure
	Notes

	Select Template
	Add Users
	Caveats

	Delete Users
	Additional Points to Remember

	3.4 Independent Packages
	3.4.1 Independent Packages
	3.4.2 Library Microservice
	Host Library Microservice
	Setup the File System
	Outside the DTaaS Platform
	Inside the DTaaS Platform

	Install
	npmjs
	Github

	Use
	Protocol Support

	Service Endpoints

	Host Library Microservice
	Setup the File System
	Outside the DTaaS Platform
	Inside the DTaaS Platform

	Use
	Service Endpoints

	3.5 Guides
	3.5.1 Install DTaaS on localhost (GUI)
	Design
	Requirements
	Download Package
	Starting Portainer
	Configuration
	Create User Workspace
	Creating the Portainer Stack

	Use
	Limitations
	References

	3.5.2 Check Client Configuration
	3.5.3 Add User
	3.5.4 Remove User
	Caveat

	3.5.5 Link services to local ports
	3.5.6 Make Common Assets Read Only
	Why
	How

	3.5.7 Renewing LetsEncrypt Certificates
	Overview
	Prerequisites
	Certificate Renewal Process
	Step 1: Generate New Certificates
	Step 2: Locate Certificate Files
	Step 3: Deploy Certificates to DTaaS
	Step 4: Verify Container Volume Mappings
	Step 5: Restart DTaaS Service Gateway
	Step 6: Restart Platform Services
	Step 7: Configure RabbitMQ Certificates
	Step 8: Configure MongoDB Certificates

	Verification
	Troubleshooting
	Common Issues
	Log Analysis

	Security Considerations

	4. Frequently Asked Questions
	4.1 Abreviations
	4.2 General Questions
	4.3 Digital Twin Assets
	4.4 Digital Twin Models
	4.5 Communication Between Physical Twin and Digital Twin
	4.6 Digital Twin DevOps Automation
	4.7 Data Management
	4.8 Platform Native Services on the DTaaS Platform
	4.9 Comparison with other DT Platforms
	4.10 GDPR Concerns

	5. Developer
	5.1 Contributors Guide
	5.1.1 Project Goals
	5.1.2 Development Environment
	5.1.3 Development Workflow
	5.1.4 ✨ Coding Agents and Editors
	5.1.5 Code Quality
	Qlty
	Codecov
	GitHub Actions

	5.1.6 References

	5.2 Contributor Covenant Code of Conduct
	5.2.1 Our Pledge
	5.2.2 Our Standards
	5.2.3 Enforcement Responsibilities
	5.2.4 Scope
	5.2.5 Enforcement
	5.2.6 Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	5.2.7 Attribution

	5.3 Secrets for Github Action
	5.4 System
	5.4.1 System Overview
	User Requirements
	System Architecture
	System Components

	References

	5.4.2 Current Status
	User Security
	Gateway Authorization

	User Workspaces
	Platform Services
	Development Priorities
	References

	5.5 OAuth2 Authorization
	5.5.1 OAuth 2.0 Summary
	Entities
	The OAuth 2.0 Client

	OAuth 2.0 Workflows
	OAuth 2.0 Authorization Code Flow
	OAuth 2.0 PKCE (Proof Key for Code Exchange) Flow

	5.5.2 System Design of DTaaS Authorization Microservice
	Requirements
	Forward Auth Middleware in Traefik
	Auth MS Design

	5.5.3 Auth Microservice
	Workflow
	User Identity using OAuth 2.0
	Checking User permissions - Authorization

	Implementation
	Traefik-forward-auth

	5.6 Testing
	5.6.1 Fundamental Concepts in Software Testing
	Definition of Software Testing
	Importance of Software Testing
	Test Driven Development (TDD)
	Behaviour Driven Development (BDD)

	5.6.2 Testing Workflow
	Unit Tests
	Benefits of Unit Testing
	Unit Tests in DTaaS

	Integration Tests
	End-to-End Tests
	Feature Tests

	5.6.3 References

	5.7 Docker Workflow for DTaaS
	5.7.1 Folder Structure
	5.7.2 Build and Publish Docker Images
	Developer Usage

	5.7.3 Running Docker Containers
	Development Environment
	Accessing the Application

	5.8 Publish NPM packages
	5.8.1 Default npm registry
	5.8.2 Github npm registry
	5.8.3 Private Registry
	Setup private npm registry
	Publish to private npm registry

	Use the packages

	5.9 Command Line Interface
	5.9.1 Package Structure
	5.9.2 Architecture and Design
	Key Modules
	Configuration Module
	User Operations Module
	Utility Functions

	5.9.3 Sequence Diagram
	5.9.4 Error Handling Pattern
	5.9.5 Resource Limits Configuration

	5.10 React Website
	5.10.1 Architecture Overview
	Core Architecture Patterns

	5.10.2 Package Structure
	5.10.3 Key Components
	Backend Abstraction Layer
	State Management
	Route Modules

	5.11 Library Microservice
	5.11.1 Architecture and Design
	5.11.2 Package Structure
	5.11.3 Key Components
	GraphQL Resolver
	File Service Interface
	Backend Implementations
	Factory Pattern

	5.11.4 UML Diagrams
	Class Diagram
	Sequence Diagram

	5.12 Runner Microservice
	5.12.1 Package Structure
	5.12.2 Architecture and Design
	Core Components

	5.12.3 Key Components
	REST API Controller
	Execution Manager
	Command Queue
	Runner Interface
	Configuration

	5.12.4 Security Considerations

	5.13 DevOps Framework
	5.13.1 Overview
	Expectations From a DevOps Framework
	High Level Architecture
	Gitbeaker

	5.13.2 GitLab CI/CD Infrastructure
	CI/CD Pipelines
	Parent Pipeline
	Digital Twin Structure
	Child Pipelines

	5.13.3 API Calls
	5.13.4 Implemented Classes
	GitlabInstance
	DigitalTwin
	LibraryAsset

	6. Known Issues in the Software
	6.1 Third-Party Software
	6.2 GitLab

	7. Thanks
	7.1 Funding Sources
	7.2 Developers
	7.3 Example Contributors
	7.4 Documentation

	8. License
	8.1 License
	8.2 Third Party Software
	8.2.1 User Installations
	8.2.2 Development Environments
	8.2.3 Package Dependencies

