
1 Protocol

The COE protocol is based a JSON over HTTP protocol using a similar approach as RET
however the COE keeps state. The format used to describe each command is that its URL
is listed and any arguments are prefixed with a colon i.e. :secction

1.1 The API Command

The command is available at:

http://coe/ or http://coe/api

or the following for a PDF version:

http://coe/api/pdf

The command returns the following response on success;

This document in either or the content types selected using the /pdf URL:

Content-Type: application/pdf Returns a PDF version of this document.

Content-Type: text/plain This tex document.

1.2 The Status Command

The command is available at:

http://coe/status/:session

The command takes the following arguments:

:session Optional session id filtering the returned data array

The command returns the following response on success;

1 [
2 {
3 "status":"idle",
4 "sessionid": -1
5 }
6]

If no session id is given then an array of all session statuses are returned.

1.3 The Initialize Command

The command is available at:

http://coe/initialize

The command takes no arguments but requires a JSON payload Content-Type: applica-
tion/json:

1

http://coe/
http://coe/api
http://coe/api/pdf
http://coe/status/:session
http://coe/initialize

1 {
2 "fmus":[
3 "file://controller.fmu",
4 "file://tank.fmu"
5],
6 "connections":{
7 "{guid-controller}.valve":"[{guid-tank}.valve"],
8 "{guid-tank}.level":["{guid-controller}.level"]
9 },

10 "parameters":{
11 "maxLevel":8,
12 "minLevel":2
13 },
14 "algorithm":{
15 "type":"fixed-step",
16 "size":0.1
17 }
18 }

The JSON payload contains the following entries:

fmus A list of the location of the FMUs

connections A map of connections, output to input

parameters A map from parameter to value

algorithm Step size algorithm configuration:

fixed-step A fixed step size algorithm is available requiring a step size to be specified

taggedRelatedVariables TBD

observable TBD

The command returns the following response on success;

1 {
2 "status":"initialized",
3 "sessionid": 1234,
4 "avaliableLogLevels":{
5 "{8c4e810f-3df3-4a00-8276-176fa3c9f001}.tank":[
6 {
7 "name":"logAll",
8 "description":"Description of this loggin level"
9 },

10 {
11 "name":"logError",
12 "description":null
13 }],
14 "{8c4e810f-3df3-4a00-8276-176fa3c9f000}.controller":[
15 {
16 "name":"logAll",
17 }]
18 }
19 }

The avaliableLogLevels will be specific to the FMUs given in the initial payload. The
sessionid is the id that must be supplied in any subsequent calls.

2

1.4 The Simulate Command

The command is available at:

http://coe/simulate/:session

The command takes the following arguments and requires a JSON payload Content-Type:
application/json:

:session The session id

The Data payload:

1 {
2 "startTime":0.0,
3 "endTime":10.1,
4 "logLevels": {
5 "{8c4e810f-3df3-4a00-8276-176fa3c9f001}.tank":
6 ["logAll", "logError"],
7 "{8c4e810f-3df3-4a00-8276-176fa3c9f000}.tank":
8 ["logError"]
9 }

10 }

The payload contains the stand and end time interval plus the log levels.

The command returns the following response on success;

1 {
2 "status":"simulating",
3 "sessionid": 1234
4 }

1.5 The Result Command

The command is available at:

http://coe/result/:session/:type

The command takes the following arguments:

:session The session id

:type Optional parameter. Possible parameters are: plain/zip and default is plain

The command returns the following response on success;

A response supports two return formats selected by the :type argument and indicated
using the content type:

Content-Type: application/zip Returns a zip file containing the initialization data + start
data + the result obtained during the simulation

Content-Type: text/plain Returns the result obtained during the simulation as text. The
result is a CSV formatted string with: time, stepsize, and all outputs at that time

3

http://coe/simulate/:session
http://coe/result/:session/:type

1.6 The Destroy Command

The command is available at:

http://coe/destroy/:session

The command takes the following arguments:

:session The session id

The command destroys a session and releases all resources bound to the session on success
full termination.

1.7 The Reset Command

The command is available at:

http://coe/reset

The command resets the COE to its initial state on success full termination.

2 Variable Stepsize Calculator (Description)

Three of the four constraint types (Zero Crossing, Bounded Difference, and Sampling Rate)
are defined in a JSON file that is posted to the COE with the initialize command (see
Section 1.3), and one (FMU-requested) is requested by the simulated FMUs.

After initialization, the variable stepsize calculator holds a set of constraint handlers. Each
handler is responsible for one constraint. When asked for the next stepsize by the COE,
the variable stepsize calculator asks each handler for the next stepsize and returns the
minimum of these values.

2.1 Interface with the Master Algorithm

The variable stepsize calculator is called by the master algorithm before each doStep.
It is given by the master algorithm the current time, the previous stepsize, the current
output values, and the (estimated) output derivatives of the FMUs. The variable stepsize
calculator returns to the master algorithm the next stepsize.

After a doStep, the master algorithm asks the variable stepsize calculator to validate
the taken step, i.e. to check whether any constraints have been violated. If that is the case,
a warning is issued. If all FMUs support rollback, a rollback is initiated and the master
algorithm asks the variable stepsize calculator for a new, reduced stepsize.

The algorithm for derivative estimation, see Section 2.3.2, has been moved from the
variable stepsize calculator to the COE. This is done so that the master algorithm may
estimate derivatives and supply these to FMUs that have the capability canInterpolateIn-
puts. To be clear, if the FMU that supplies these signals also provides derivatives, these
are used, but if that FMU has maxOutputDerivativeOrder=0 [or <=1 in the case of second
order input derivatives]), the estimated values are used.

4

http://coe/destroy/:session
http://coe/reset

2.2 Constraint Types

There are four constraint types,

• Zero Crossing

• Bounded Difference

• Sampling Rate

• FMU-requested,

of which the first three are defined in the JSON file (see Section 3.2). The fourth constraint,
FMU-requested, is not defined in the JSON file but is coded in an FMU and reported by the
FMU when the COE queries for it (see Section 2.6).

2.3 Zero Crossing Constraints

A zero crossing constraint is a continuous constraint. A zero crossing occurs at the point
where a function changes its sign. In simulation, it can be important to adjust the stepsize
such that a zero crossing is hit (more or less) exactly. For instance, a ball should rebound
from a wall exactly when the distance between the ball and the wall hits zero and not
before or after that.

A solver in a tool such as Simulink can adjust the stepsize using iterative approaches, but
in a co-simulation a rollback of the participating models’ internal states is in general not
possible or efficient. Hence, the variable stepsize calculator bases its stepsize adjustments
on the prediction of a future zero crossing.

For the definition of a zero crossing constraint in the JSON file, see Section 3.2.1.

2.3.1 Extrapolation

To predict a future zero crossing, the zero crossing function f must be extrapolated.

For first order extrapolation,

f(t+ ∆t) = f(t) + ḟ(t)∆t

is used.

For second order extrapolation,

f(t+ ∆t) = f(t) + ḟ(t)∆t+ 0.5f̈(t) (∆t)2

is used.

2.3.2 Derivative Estimation

The derivatives ḟ(t) and f̈(t) are either provided by the FMUs (if the capability maxOut-
putDerivativeOrder is high enough), or estimated. For first order extrapolation, the last
two data points are used to estimate the first derivative. For second order extrapolation,
either the last three data points are used to estimate the first and second derivate, or, if
the FMU provides the first but not the second derivative, the last two data points and their
first derivatives are used to estimate the second derivative.

5

2.3.3 Extrapolation Error Estimation

Extrapolation will generally incur an extrapolation error; the variable stepsize calculator
estimates that error based on past extrapolation errors. After completion of a time step,
the variable stepsize calculator compares the actual value x of the zero crossing function
f with the value x̂ that was predicted one time step earlier. The estimated extrapolation
error ε̂ follows

ε←
{
αε̂+ (1− α) |x− x̂| if ε̂ > |x− x̂|
|x− x̂| otherwise

, (1)

i.e. it decreases slowly (α = 0.7) with a first order IIR-filter rule when the extrapolation
error becomes smaller, and rises abruptly to the actual value when the extrapolation error
becomes larger.

2.3.4 Estimation of the number of timesteps to a zero crossing

The variable stepsize calculator (conservatively) estimates the number of timesteps n to
hit the predicted zero crossing f(tZC) = 0 at time tZC , when starting from the current time
t (with t ≤ tZC) and when keeping the current stepsize ∆t constant, to

n =
tZC − t

∆t
· 1

1 + ε̂+ σ
(2)

with ε̂ the estimated extrapolation error and σ the (additional) level of conservatism op-
tionally specified by the attribute safety in the JSON config file.

The rationale of this equation is that the left term predicts the zero crossing exactly when
the zero crossing function f is, in the case of first order extrapolation, a straight line, or, in
the case of second order extrapolation, a straight line or second order parabola. An extrap-
olation error generally occurs for all other functions f , with the danger of overestimating
n and thus potentially choosing a too large stepsize (that steps over the zero crossing with
the consequence that the tolerance of the zero crossing may be violated). Therefore, n
is conservatively underestimated. The degree of this conservatism is defined by the sec-
ond term and depends on both the (time-varying) estimated extrapolation error ε̂ and the
(constant) value of the safety attribute σ.

2.3.5 Detection of unstable oscillations

Unstable oscillations around the zero crossing are detected by monitoring the last three
data points and checking whether these lie on alternating sides of the zero crossing and
increase in absolute value.

2.3.6 Stepsize adjustment strategy

The chosen stepsize ∆t is in most cases determined by a factor ρ that is multiplied with the
previous stepsize ∆tprev (and saturated to lie within the specified stepsize interval). The
stepsize is said to be adjusted to hit the zero crossing when ρ = n (for n ≤ 1). The stepsize
is said to be tightened when ρ = TIGHTENING_FACTOR. The stepsize is held constant,
when ρ = 1. The stepsize is said to be relaxed when ρ = RELAXATION_FACTOR. The

6

Table 1: Default values for the stepsize adjustment factors.
TIGHTENING_FACTOR 0.5
RELAXATION_FACTOR 1.2
STRONG_RELAXATION_FACTOR 3.0

stepsize is said to be strongly relaxed when ρ = STRONG_RELAXATION_FACTOR.
The default values for these factors are listed in Table 1.

By inspecting the last two data points, the direction of the simulated trajectory with respect
to the zero crossing can be either:

• distancing zero crossing,

• approaching zero crossing,

• crossed zero.

When distancing a zero crossing, the stepsize is strongly relaxed.

When approaching a zero crossing, the current value of the zero crossing function, f(t), is
compared to the value of the absolute tolerance, abstol.

If

|f(t)| ≤ abstol · TOLERANCE_SAFETY _FACTOR (3)

with TOLERANCE_SAFETY _FACTOR ≤ 1.0 and a default value of 0.5, then f(t) is
said to be well within tolerance, and the stepsize is relaxed (the zero crossing has not yet
occurred but is already precisely resolved).

If

|f(t)| ≤ abstol (4)

then f(t) is said to be within tolerance, and the stepsize is held constant (the zero crossing
has not yet occurred but is already resolved).

If

|f(t)| > abstol (5)

then f(t) is said to be outside tolerance, and the (conservatively) estimated value for the
number of timesteps to hit the predicted zero crossing, n, is considered.

• If n ≤ 1, then the stepsize is adjusted to hit the zero crossing.

• If 1 < n ≤ δtighten, then the stepsize is tightened.

• If δtighten < n ≤ δrelax, then the stepsize is held constant.

• If δrelax < n ≤ δstronglyrelax, then the stepsize is relaxed.

• If δstronglyrelax < n, then the stepsize is strongly relaxed.

7

Table 2: Default values of the distance bin separators for the number of timesteps to hit a
predicted zero crossing.

δtighten 1.8 (= 1.5 ·RELAXATION_FACTOR)
δrelax 3.0 (= STRONG_RELAXATION_FACTOR)
δstronglyrelax 30.0 (= 10.0 · δrelax)

The default values of the parameters δi are listed in Table 2.

When the simulated trajectory crossed zero in the previous time step, it is checked whether
or not unstable oscillations around the zero crossing are building up.

• If unstable oscillations occur, and f(t) is well within tolerance, then the stepsize is
held constant.

• If unstable oscillations occur, and f(t) is within tolerance, then the stepsize is tight-
ened.

• If unstable oscillations occur, and f(t) is outside tolerance, then the stepsize is set to
its minimal value.

• If unstable oscillations do not occur, and f(t) is well within tolerance, then the step-
size is relaxed.

• If unstable oscillations do not occur, and f(t) is within tolerance, then the stepsize is
held constant.

• If unstable oscillations do not occur, and f(t) is outside tolerance, then the stepsize
is tightened.

The final three reactions (when unstable oscillations do not occur) are somewhat conserva-
tive, with the intention of discouraging possible oscillations around the zero crossing from
developing. Therefore, the stepsize immediately after the zero crossing is kept small.
Altogether, these are the 14 possible reactions of the variable step size calculator to ex-
haustively handle a zero crossing constraint.

2.4 Bounded Difference Constraints

A bounded difference constraint is a continuous constraint. A bounded difference ensures
that the minimal and maximal value of a set of values do not differ by more than a speci-
fied amount (the underlying assumption is that this difference becomes smaller when the
stepsize is reduced). For the definition of a bounded difference constraint in the JSON file,
see Section 3.2.2.
The capability to impose a bounded difference can be useful in co-simulation, for instance,
in the calculation of the heat exchange between model A of temperature TA and model B
of temperature TB. Here, at least one of the models must calculate the heat flow, which is
a function of both TA and TB. The model that calculates the heat flow, say model A, knows
its own temperature TA but only has a view, TB,view, on model B’s true temperature TB. To
bound the error of the calculated heat flow, a bounded difference between TB and TB,view

is imposed.

8

The bounded difference problem is distinct from the zerocrossing problem in that there is
not a specific time instant (the zero crossing) to hit, but rather a specific time difference
(the stepsize that keeps the difference bounded).

To choose the next stepsize, the current absolute and relative differences between the
minimal and maximal values, δA and δR, are calculated and compared to the absolute and
relative tolerances, εA and εR, respectively. Based on this comparison, the absolute and
relative differences are each assigned to one of five distance bins. With the safety factor

σ =
1

1 + safety
, (6)

with i = A,R, and with the default values of the parameters

αSAFE ≤ αTARGET ≤ αRISKY ≤ 1 (7)

listed in Table 3,

Table 3: Default values of the parameters used in the distance bin assignment of the
bounded difference algorithm.

αRISKY 0.6
αTARGET 0.4
αSAFE 0.2

the bins are determined. If

• δi > εi , then the difference i is assigned to the VIOLATION bin.

• εi ≥ δi > εiσαRISKY , then the difference i is assigned to the RISKY bin.

• εiσαRISKY ≥ δi > εiσαTARGET , then the difference i is assigned to the TARGET bin.

• εiσαTARGET ≥ δi > εiσαSAFE , then the difference i is assigned to the SAFE bin.

• εiσαSAFE ≥ δi , then the difference i is assigned to the SAFEST bin.

Of the two assigned distance bins, the less safe one (the one ranking higher in the bullet
list above) is chosen. If this distance bin is the

• VIOLATION bin, then the stepsize is strongly tightened.

• RISKY bin, then the stepsize is tightened.

• TARGET bin, then the stepsize is held constant.

• SAFE bin, then the stepsize is relaxed.

• SAFEST bin, then the stepsize is strongly relaxed.

A strongly tightened stepsize means that δ = STRONG_TIGHTENING_FACTOR with
default value 0.01 is multiplied with the previous stepsize (∆t)prev to obtain the next step-
size ∆t. The meaning of the other stepsize adjustments is analogous to the implementation

9

of the zero crossing algorithm (see Section 2.3.6). The chosen stepsize is saturated to the
stepsize interval.

This algorithm for the bounded difference handler tries to adjust the stepsize such that
it is kept within the TARGET bin throughout the simulation. Because a variable stepsize
calculator in a co-simulation cannot (efficiently) obtain the stepsize through an iterative
approach, it needs to make fairly sure that the stepsize it selects does not lead to a toler-
ance violation. The stepsize calculation must therefore be somewhat conservative, which
is essentially manifested in the RISKY bin as a buffer between the TARGET and VIOLATION
bins.

On the safe side of the TARGET bin, two bins must exist. The SAFE bin has an associated
relaxation factor that is small enough so that a stepsize relaxation should not lead to an
overshoot of the bound difference beyond the TARGET bin in the next time step. The
SAFEST bin has an associated strong relaxation factor that is equal to the strong relaxation
factor used by all other continuous constraints to prevent interference between continuous
constraints (see Section 2.7.1).

Note that the above described algorithm of the Bound Difference handler is extended below
to prevent interference by discrete events (see Section 2.7.3).

2.5 Sampling Rate Constraints

A sampling rate constraint is a discrete constraint. It constrains the stepsize such that
repetitive, predefined time instants are exactly hit. This can be useful in co-simulation, for
instance, when a modeled control unit reads a sensor value every x milliseconds.

For the definition of a sampling rate constraint in the JSON file, see Section 3.2.3.

The chosen stepsize is either the time difference between the current time and the time
instant of the next sampling, or the maximal stepsize, whichever is smaller. Note that the
minimal stepsize may be violated to hit a sampling event.

2.6 FMU-requested Constraints

A constraint requested by an FMU is a discrete constraint. A proposal is underway to
extend the FMI standard with the procedure

fmi2Status fmi2GetMaxStepSize(fmi2Component c,

fmi2Real *maxStepSize);

so that an FMU can report in advance the maximal stepsize that it will accept in the next
time step. The variable stepsize calculator queries all FMUs for these stepsizes and uses
the minimum of the reported values as upper bound for the next stepsize.

2.7 Interference between constraint handlers

When multiple constraints are present, their handlers may interfere with each other in the
sense that one constraint may become active only because another one has been active in
the previous step. Measures are taken to counter such interference.

2.7.1 Interference between continuous constraints handlers

Interference between continuous constraint handlers occurs when

10

1. in one time step, Constraint A is active (i.e. constrains the stepsize);

2. in the next time step, the handler for Constraint A relaxes the stepsize by a factor
ρA > 1, and

3. Constraint B becomes active – not because its handler protects against a potential
violation, but only because it cannot relax the stepsize by more than a factor ρB < ρA.

To prevent such interference, all continous contraints must have the same value for their
respective maximal relaxation factors. Therefore, in the implementation of the variable
stepsize calculator, STRONG_RELAXATION_FACTOR is the maximal relaxation factor
for both Zero Crossing and Bounded Difference constraints and defined in the scope of the
whole calculator – not in the scope of individual constraints (as other factors are). When
constraints relax strongly, STRONG_RELAXATION_FACTOR is used .
(Strictly speaking, when all continuous constraints relax strongly with the same relaxation
factor, they all become active. The important point is that none of them slows down the
relaxation process unnecessarily by relaxing less than the others.)

2.7.2 Interference between discrete constraints handlers

Discrete constraints handlers base their stepsize requirements on independent time in-
stants and therefore do not interfere with each other.

2.7.3 Interference between discrete and continuous constraint handlers

When a discrete constraint handler has limited the stepsize in the previous step, the ques-
tion arises how a continuous constraint handlers shall proceed with its calculation of the
next stepsize. The situation that shall be avoided is this: All continuous constraint handlers
would allow a large stepsize, but a discrete constraint handler enforces a sudden, strong
reduction of the stepsize. In the steps that follow, there are no discrete events, but the
continuous constraint handlers require potentially many steps to repeatedly strongly relax
the stepsize until it becomes large again.
The solution to this problem is different for Zero Crossing and Bounded Difference con-
straint handlers.

Extension of the Zero Crossing handler To prevent the above described undesired
situation, Zero Crossing handlers calculate the next stepsize based on the last stepsize
that was not limited by a discrete constraint.
To be precise, a Zero Crossing handler uses the previous data points irrespective of the
previously active constraints to calculate the extrapolation. But when it calculates the next
stepsize, it discards all previous stepsizes that were limited by a discrete constraint and
chooses the last stepsize that was limited by a continuous constraint. With the thus chosen
previous stepsize (and the result of the extrapolation), the handler calculates the factor
ρ that is multiplied to the chosen previous stepsize in order to obtain the next stepsize.
With this approach, introduced discrete events do not markedly affect the tightening and
relaxation of the stepsize selected by a Zero Crossing handler.
This approach is safe, in the sense that a zero crossing should not be crossed prematurely,
for two reasons. First, introduced discrete events always shorten the stepsize when ap-
proaching the zero crossing, which is conservative. Second, the assumed previous stepsize

11

may be larger than the true previous stepsize (that was limited by a discrete constraint
handler), but this does no harm: The calculation of the next stepsize is based on the num-
ber of timesteps to the predicted zero crossing, n, with the assumption that the (assumed)
previous stepsize is held constant. When the previous stepsize is larger, n becomes smaller,
favoring a stronger tightening of the next stepsize in particular close to the zero crossing,
where the stepsize is adjusted to hit.

Essentially, the Zero Crossing handler can safely ignore previous stepsizes that were lim-
ited by discrete constraints because it needs to hit a time instant (i.e. the zero crossing)
and that time instant does not depend on the previous stepsizes (time differences). The
situation is different for the Bounded Difference handler.

Extension of the Bounded Difference handler Whereas the Zero Crossing handler
needs to hit a time instant (i.e. the zero crossing) that does not depend on the previous
stepsizes (time differences), the Bounded Difference handler needs to limit a value differ-
ence that does depend on the stepsize. When the Bounded Difference handler notices that
the previous stepsize was limited by a discrete constraint, it may proceed in either of two
ways.

First, the Bounded Difference handler could simply go forward as usual (i.e. it calculates
the next stepsize by scaling the previous stepsize by the factor that is associated with the
determined diffe-rence bin). Because the previous stepsize was limited by a discrete event
and was therefore shorter than the stepsize that the Bounded Difference handler would
have chosen, this strategy will frequently lead to the stepsize being relaxed or strongly
relaxed.

Second, the Bounded Difference handler could take the last stepsize that was limited by
a continuous constraint and repeat the decision it made then on that stepsize. To prevent
that a repeated decision overly relaxes the stepsize, the repeated decision will hold the
stepsize constant whenever the past decision was to relax or strongly relax it. To prevent
that a repeated decision overly tightens the step-size, the chosen next stepsize may never
be smaller than the one obtained with the above (usual) strategy.

By default, the second strategy is enabled. However, in rare cases that strategy may lead
to a tolerance violation (a chain of discrete events could carry a past decision to hold
the stepsize constant through time; when the chain of discrete events stops, the stepsize
will be held constant in the next step but it might have needed to be tightened instead).
Therefore, it is possible to disable the second strategy by setting the optional attribute
"skipDiscrete" to false in the JSON configuration file (see Section 3.2.2).

to the definition of the Bounded Difference constraint in the JSON config file. When the sec-
ond stra-tegy is disabled, an active discrete constraint will likely reduce the next stepsize(s)
proposed by the Bounded Difference constraint handler, potentially reducing efficiency.

2.8 Logging

The variable stepsize calculator writes to the same log as the COE.

When a step is taken with maximal stepsize, the variable stepsize calculator produces no
log output.

When a step is taken with a less than maximal stepsize, the variable stepsize calculator
logs the identifiers of the active constraints and the action of their handlers. For instance,
a log entry would read

12

Time 0.9499999999999998, stepsize 0.09, limited by constraint
"bd" with decision to hold the stepsize constant

(absolute difference within target range)

When all continuous constraints relax strongly, the log entry does not list all constraints
but is shortened to
Time 5.000458745644138, stepsize 9.536808544011453E-4,

all continuous constraint handlers allow strong relaxation

When a Zero Crossing constraint handler detects a zero crossing, it produces a log entry
which would read, for instance,
A zerocrossing of constraint "zc" occurred in the time interval
[14.999971188014648 ; 15.000117672389647] and was hit

with a distance of 0.18103104302103257

When the variable stepsize calculator detects that a constraint has been violated in the
previous step, it logs a warning. For instance, such a warning would read
Absolute tolerance violated!

| A zerocrossing of constraint "zc"
| occurred in the time interval [4.998123597131701 ; 5.008123597131701]
| and could only be resolved with a distance of 11.789784201164633
| which is greather than the absolute tolerance of 1.0
| The stepsize equals the minimal stepsize of 0.01 !
| Decrease the minimal stepsize

or increase this constraint’s tolerance

3 Variable Stepsize Calculator (Appendix)

3.1 JSON example

The variable stepsize calculator is selected and configured in a JSON config file. This file is
posted to the COE with the initialize command (see Section 1.3). An example JSON config
file follows.

1 {
2 "fmus":[
3 "src/test/resources/varsteptest/VarStepSolverTest_FMUs_MassA",
4 "src/test/resources/varsteptest/VarStepSolverTest_FMUs_MassB",
5 "src/test/resources/varsteptest/VarStepSolverTest_FMUs_Sine",
6 "src/test/resources/varsteptest/VarStepSolverTest_FMUs_Sink"
7],
8 "connections":{
9 "{94452923-8b46-4282-add4-78fc6772cc75}.massA.QA":[

10 "{777954a3-7ea4-4398-909a-45216b2ee41c}.massB.QA",
11 "{66b828eb-c298-4b5c-adc9-75ee0b577cd9}.sink.QA"
12],
13 "{808dbf1b-d60f-418c-b4de-bde98cee7602}.sine.EXTSIG":[
14 "{777954a3-7ea4-4398-909a-45216b2ee41c}.massB.EXTSIG",
15 "{66b828eb-c298-4b5c-adc9-75ee0b577cd9}.sink.EXTSIG"
16],
17 "{777954a3-7ea4-4398-909a-45216b2ee41c}.massB.TB":[
18 "{94452923-8b46-4282-add4-78fc6772cc75}.massA.TB",
19 "{66b828eb-c298-4b5c-adc9-75ee0b577cd9}.sink.TB"
20],
21 "{94452923-8b46-4282-add4-78fc6772cc75}.massA.TB_used":[
22 "{66b828eb-c298-4b5c-adc9-75ee0b577cd9}.sink.TB_used"
23]

13

24 },
25 "parameters":{
26 "{777954a3-7ea4-4398-909a-45216b2ee41c}.massB.B.C":15000.0,
27 "{94452923-8b46-4282-add4-78fc6772cc75}.massA.A.C":120000.0
28 },
29 "algorithm":{
30 "type":"var-step",
31 "size":[
32 1E-6,
33 1.0
34],
35 "initsize":1E-4,
36 "constraints":{
37 "zc":{
38 "type":"zerocrossing",
39 "ports":[
40 "{808dbf1b-d60f-418c-b4de-bde98cee7602}.sine.EXTSIG"
41],
42 "order":2,
43 "abstol":1.0,
44 "safety":0.0,
45 },
46 "bd":{
47 "type":"boundeddifference",
48 "ports":[
49 "{777954a3-7ea4-4398-909a-45216b2ee41c}.massB.TB",
50 "{94452923-8b46-4282-add4-78fc6772cc75}.massA.TB_used"
51],
52 "abstol":1.0,
53 "reltol":1.0,
54 "safety":0.0,
55 },
56 "sr":{
57 "type":"samplingrate",
58 "base":-1,
59 "rate":10,
60 "startTime":15
61 }
62 }
63 }
64 }

The variable stepsize calculator is selected and defined in the algorithm object. The
algorithm object comprises four name-value pairs:

• type:"var-step" selects the variable stepsize calculator (each algorithm has a type).

• size:[<minimal stepsize> , <maximal step size>] defines the stepsize interval
as an array of double values.

• initsize:<initial stepsize> defines the initial stepsize as double value.

• constraints: defines the stepsize constraints (see Section 3.2).

3.2 Definition of a Stepsize Constraint

A constraint is defined in the JSON file by

14

1 "id":{
2 type:"[zerocrossing|boundeddifference|samplingrate]",
3 ...
4 }

In the JSON file, id is a string that is used to identify the constraint e.g. in the log.
All constraints have a single common name-value pair with name type. The value of type
specifies the type of the constraint; the other name-value pairs of the constraint depend on
the value of type.

3.2.1 Definition of a Zero Crossing Constraint

A constraint of "type":"zerocrossing" is defined by

1 "id":{
2 "type":"zerocrossing",
3 "ports":[
4 "<guid>.<instance>.<outport>",
5 "<guid>.<instance>.<outport>"
6],
7 "order":[1|2],
8 "abstol":<double>,
9 "safety":<double>

10 }

where the second entry in the ports list and the attributes order, abstol and safety are
optional. The name-value pairs have the following meaning.

• ports: defines the zerocrossing function f as an array of strings of size 1 or 2. If one
output port is provided, then f is the value of that output port. If two output ports are
provided, then f is the difference between the values of the first and second output
ports. Any other size of the string array is not supported.

• order: this name-value pair is optional; it specifies the extrapolation order that is
used to predict a zero crossing (see Section 2.3.1). First and second order extrapola-
tion are supported. The default is second order extrapolation.

• abstol: this name-value pair is optional; it specifies the absolute tolerance. The
stepsize calculator attempts to adjust the stepsize such that at a time instant tZC the
absolute value of the zero crossing function f is smaller or equal than the absolute
tolerance, |f(tZC)| ≤ abstol. The default value for the absolute tolerance is 10−3.

• safety: this name-value pair is optional; it adjusts the conservatism of the zero cross-
ing prediction. The neutral default value is 0.0. If the variable stepsize calculator fails
to resolve a zero crossing of a particular co-simulation within the absolute tolerance
(and the minimal stepsize is not the limiting factor), then the value for safety can be
increased for more conservatism in the zero crossing prediction. Negative values for
less conservatism are mathematically possible but should probably not be used.

3.2.2 Definition of a Bounded Difference Constraint

A constraint of "type":"boundeddifference" is defined by

15

1 "id":{
2 "type":"boundeddifference",
3 "ports":[
4 "<guid>.<instance>.<outport>"
5 ,"<guid>.<instance>.<outport>"
6 ,"<guid>.<instance>.<outport>"
7 ...
8]
9 ,"abstol":<double>

10 ,"reltol":<double>
11 ,"safety":<double>
12 ,"skipDiscrete":<boolean>
13 }

where entries after the first in the ports list and the attributes abstol, reltol, safety
and skipDiscrete are optional. The name-value pairs have the following meaning.

• ports: defines a set of values whose minimal and maximal value shall have a bounded
difference. The set of values is defined by a non-empty array of strings. If one output
port is provided, then the set of values comprises that output port’s current value and
its previous value. If at least two output ports are provided, then the set of values
comprises the output ports’ current values.

• abstol: this name-value pair is optional; it specifies the absolute tolerance. The
stepsize calculator attempts to adjust the stepsize such that the absolute difference
between the minimal and maximal value is smaller than the value of abstol. The
default value for the absolute tolerance is 10−3.

• reltol: this name-value pair is optional; it specifies the relative tolerance. The
stepsize calculator attempts to adjust the stepsize such that the relative difference
between the minimal and maximal value is smaller than the value of reltol. The
default value for the relative tolerance is 10−2.

• safety: this name-value pair is optional; it adjusts the conservatism of the algorithm
that selects the next stepsize. The neutral default value is 0.0. If the variable stepsize
calculator fails to keep the difference bounded (and the minimal stepsize is not the
limiting factor), then the value of safety can be increased for more conservatism
in the stepsize selection algorithm. Small negative values above αRISKY − 1, i.e.
per default above −0.4 (see Table 3), are possible for less conservatism. Negative
values below or equal to αRISKY − 1 lead to undefined behavior of the difference bin
assignment algorithm (see Section 2.4).

• skipDiscrete: this optional name-value pair is by default set to true, i.e. the
skipping over previous stepsizes that were limited by discrete constraints (see Sec-
tion 2.7.3) is by default enabled. It may be disabled by setting this value to false.

3.2.3 Definition of a Sampling Rate Constraint

A constraint of "type":"samplingrate" is defined by

1 "id":{
2 "type":"samplingrate",

16

3 "base":<integer>,
4 "rate":<integer>,
5 "startTime":<integer>
6 }

with the name-value pairs

• base: defines the exponent of 10 of the time base in seconds.

• rate: defines the sample rate in multiples of 10base.

• startTime: defines the occurrence of the first sample hit in multiples of 10base.

For instance, in the listing shown in Section 3.1, the sampling starts at the time instant
15 · 10−1s = 1.5s and then proceeds with rate 10 · 10−1s = 1.0s.

17

	Protocol
	The API Command
	The Status Command
	The Initialize Command
	The Simulate Command
	The Result Command
	The Destroy Command
	The Reset Command

	Variable Stepsize Calculator (Description)
	Interface with the Master Algorithm
	Constraint Types
	Zero Crossing Constraints
	Extrapolation
	Derivative Estimation
	Extrapolation Error Estimation
	Estimation of the number of timesteps to a zero crossing
	Detection of unstable oscillations
	Stepsize adjustment strategy

	Bounded Difference Constraints
	Sampling Rate Constraints
	FMU-requested Constraints
	Interference between constraint handlers
	Interference between continuous constraints handlers
	Interference between discrete constraints handlers
	Interference between discrete and continuous constraint handlers

	Logging

	Variable Stepsize Calculator (Appendix)
	JSON example
	Definition of a Stepsize Constraint
	Definition of a Zero Crossing Constraint
	Definition of a Bounded Difference Constraint
	Definition of a Sampling Rate Constraint

